مطالعه وضعیت اقلیمی مه در فرودگاه اردبیل در دوره آماری 2011 تا 2020

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا/ پژوهشگاه هواشناسی و علوم جو

2 عضو هیات علمی پژوهشکده هواشناسی

3 عضو هیات علمی /پژوهشگاه هواشناسی و علوم جو

4 هیات علمی / پژوهشگاه هواشناسی و علوم جو

10.30467/nivar.2022.294577.1197

چکیده

وجود مه باعث کاهش دید افقی به کمتر از 1000 متر می‌شود و خدمت‌رسانی حمل و نقل هوایی را دچار اختلال می‌کند و می‌تواند نشست و برخاست هواپیماها را غیر ممکن ‌سازد. رخداد مه در صنعت هوانوردی به دلیل تأخیر و لغو پروازها هزینه‌ای بالغ بر صدها میلیون دلار به بار می‌آورد، بنابراین شناخت وضعیت اقلیمی مه در فرودگاه‌ها می‌تواند به تشخیص و پیش‌بینی بهتر آن کمک کند و مدیریت پروازها را به صورت بهینه و کمترین هزینه ممکن سازد. در این مطالعه، از داده‌های متار (METAR) فرودگاه‌ اردبیل طی سال‌های 2011 تا 2020 برای تشخیص و جداسازی انواع مه از الگوریتم تردیف و راسموسن استفاده و وضعیت اقلیم مه در طول مدت مورد مطالعه تحلیل شد. نتایج به دست آمده نشان داد که بیشترین و کمترین فراوانی مه به ترتیب از نوع تابشی و بارشی است. از نظر مدت زمان رخداد نیز مه تابشی و بارشی به ترتیب، طولانی‌ترین و کوتاه‌ترین انواع مه بودند. بیش‌ترین گزارش رخداد مه در طول سال‌های مورد مطالعه، ساعات 3 و 4 گرینویچ بود. توزیع ماهانه مه تابشی نشان داد که اغلب رخدادها در فصل پاییز و اوایل زمستان (سپتامبر تا دسامبر) است. در طول سال‌های مورد مطالعه، تغییرات سالانه رخداد مه، روند مشخصی را در تعداد ساعات مه، به جز سه سال آخر که روند کاهشی دارند، نشان نمی‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Fog study at Ardabil Airport for the statistical period from 2011 to 2020

نویسندگان [English]

  • Razieh Pahlavan 1
  • Mohammad Moradi 2
  • Sahar Tajbakhsh 2
  • Majid Azadi 3
  • Mehdi Rahnama 4
1 Ph.D. Student, /Atmospheric Science and Meteorological Research Center
2 Associate Professor/ Atmospheric Science and Meteorological Research Center
3 Associate Professor/ Atmospheric Science and Meteorological Research Center
4 Assistant Professor/ Atmospheric Science and Meteorological Research Center
چکیده [English]

The presence of fog reduces the horizontal visibility to less than 1000 meters and disrupts air transport services and can make it impossible for aircraft to land and take off. Climatology of fog can help better diagnosis and prediction of fog. In this study, METAR data from 2011 to 2020 were used to detect fog events at Ardebil Airport and according to the classification algorithm of Tardif and Rasmussen (2007), the types of events were determined. Then the fog climate was studied during the period. The results showed that the most common type of fog at Ardebil Airport is radiation fog and the rarest type is precipitation fog. In terms of duration of fog event, radiation fog was the longest fog event and precipitation fog was the shortest fog event. The highest incidence of fog during the study years was at 3 and 4 GMT. The monthly distribution of radiation fog showed that events often occurred in autumn and early winter (September to December). In terms of annual changes in the occurrence of fog, there was no significant trend in the number of fog hours during the studied years, except for the last three years which had a decreasing trend.

کلیدواژه‌ها [English]

  • Fog climatology
  • Fog type
  • Radiation fog
  • Advection fog
  • CBL fog
منابع جهانگیری، ح.، عسگری، ا.، 1396، بررسی پدیده مه اردبیل با استفاده از داده‌‌های آماری، هفتمین همایش سراسری کشاورزی و منابع طبیعی پایدار، تهران، https://civilica.com/doc/807879 صلاحی، ب.، محمدی، س.، 1390، تحلیل همدید و آماری مه‌های فرودگاه اردبیل و ارائه‌ی ساعات مناسب پروازی، پژوهش‌های جغرافیای طبیعی، 77، 92-69. Ahrens, C. D., and Henson, R., 2018, Meteorology today: An Introduction to Weather, Climate, and the Envirinment, 12th Edition. Cengage Learning. Akimoto, Y., and Kusaka, H., 2014, A climatological study of fog in Japan based on event data. Atmospheric Research, 003. http://dx.doi.org/10.1016/j.atmosres. Bendix, J., 2002, A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas. Atmospheric Research, 64, 3–18. Błas, M., Sobik, M., Quiel, F., and Netzel, P., 2002, Temporal and spatial variations of fog in theWestern Sudety Mts., Poland. Atmospheric Research, 64, 19– 28 Cséplő, A., Sarkadi, N., Horváth, Á., Schmeller, G., and Lemler, T., 2019, Fog climatology in Hungary. Quarterly Journal Of The Hungarian Meteorological Service, 123 (2), 241-264. http://doi.org/10.28974/idojaras.2019.2.7. Cereceda, P., Osses, P., Larrain, H., Farias, M., Lagos, M., Pinto, R., and Schemenauer, RS., 2002, Advective, orographic and radiation fog in the Tarapaca Region Chile. Atmospheric Research, 64, 261–271. Chen, K., Yin, Y., and Hu, Z., 2011, Influence of Air Pollutants On Fog Formation in Urban Environment of Nanjing, China, Procedia Engineering, 24, 654-657. Garcia-Garcia, F., and Zarraluqui, V., 2008, A fog climatology for Mexico. Erde, 139, 45–60. Gultepe, I., Milbrandt, J. A., and Zhou, B., 2017, Marine fog: A review on microphysics and visibility prediction (Chap. 7). In D. Koracin and C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P., Colomb, M., Drobinski, P., Dupont, E., Dupont, J. C., Gomes, L., Musson-Genon, L., Pietras, C., Plana-Fattori, A., Protat, A., Rangognio, J., Raut, J.-C., Rémy, S., Richard, D., Sciare, J., and Zhang, X. (2010, PARISFOG: shedding new light on fog physical processes. Bulletin of the American Meteorological Society, 91, 767–783, https://doi.org/10.1175/2009BAMS2671.1. Hardwick, W.C., 1973, Monthly fog frequency in the continental United States. Monthly Weather Review, 101 (10), 763–766. Hoch, SW., Whiteman, DC., and Mayer, B., 2011, A systematic study of longwave radiative heating and cooling within valleys and basins using a three-dimensional radiative transfer model. Journal of Applied Meteorology and Climatology, 50, 2473–2489, DOI: https://doi.org/10.1175/JAMC-D-11-083.1. Kui, Chen., Yan, Yin., and Zhenhua, Hu., 2011, Influence Of Air Pollutants On Fog Formation In Urban Environment Of Nanjing, China. International Conference on Advances in Engineering, 654-657 LaDochy, S., 2005, The disappearance of dense fog in Los Angeles: another urban impact? Physical Geography, 26 (3), 177–191. Lange, CA., Matschullat, J., Zimmermann, F., Sterzik, G.,Wienhaus, O., 2003, Fog frequency and chemical composition of fog water—a relevant contribution to atmospheric deposition in the Eastern Erzgebirg, Germany. Atmospheric Environment, 37, 3731–3739. Lin, C. Y., Zhang, Z. F., Pu, Z. X., et al., 2017, Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model. Journal of Meteorological Research, 31(5), 874–889. Met Office., 2005, The Great Smog of 1952. http://www.metoffice.gov.uk/ education/teens/case-studies/great-smog Accessed 23 March 2013 Mohan, M., Payra, S., 2009, Influence of aerosol spectrum and air pollutants on fog formation in urban environment of megacity Delhi, India, Environmental Monitoring and Assessment, 151(1-4), 265-77. doi: 10.1007/s10661-008-0268-8. National Oceanic and Atmospheric Administration., 1995, Surface weather observations and reports. Federal Meteorological Handbook No. 1. O’Brien, TA., Sloan, LC., Chuang, PY., Faloona, IC., and Johnstone, JA., 2012, Multidecadal simulation of coastal fog with regional climate model. Climate Dynamics, doi:10.1007/s00382-012-1486-x Peace, R.L. Jr., 1969, Heavy-Fog Regions In The Conterminous United States. Monthly Weather Review, 97, 116−123. https://doi.org/10.1175/1520-0493(1969)097<0116:HRITCU>2.3.CO;2 Roman-Cascón, C., Yagüe, C., Steeneveld, G. J., Morales, G., Arrillaga, J.A., Sastre, M. and Maqueda, G., 2019, Radiation and cloud-base lowering fog events: Observational analysis and evaluation of WRF and HARMONIE. Atmospheric Research, 229, 190–207. Sachweh, M., and Koepke, P., 1997, Fog dynamics in an urbanized area. Theoretical and Applied Climatology, 58, 87–93. Shi, C., Roth, M., Zhang, H.,B and Li, Z., 2008, Impacts of urbanization on longterm fog variation in Anhui Province, China. Atmospheric Environment, 42, 8484–8492. Singh, A., Dey, S., 2012, Influence of aerosol composition on visibility in megacity Delhi. Atmospheric Environment, 62, 367–373. Syed, FS., Kornich, H., and Tjernstrom, M., 2012, On the fog variability over South Asia. Climate Dynamics, 39, 2993–3005. Tardif, R., and Rasmussen, R.M., 2007, Event-based climatology and typology of fog in the NewYork City region. Journal of Applied Meteorology and Climatology, 46 (8), 1141–1168. Tsai, YI., Kuo, SC., Lee, WJ., Chen, CL., and Chen, PT., 2007, Long-term visibility trends in one highly urbanized, one highly industrialized and two rural areas of Taiwan. Science of the Total Environment, 382, 324–341. Wærsted, E. G., Haeffelin, M., Dupont, J.-C., Delanoë, J., and Dubuisson, P., 2017, Radiation in fog: quantification of the impact on fog liquid water based on ground-based remote sensing, Atmospheric Chemistry and Physics, 17, 10811–10835, https://doi.org/10.5194/acp-17-10811-2017. Witiw, MR., and LaDochy, S., 2008, Trends in fog frequencies in the Los Angeles Basin. Atmospheric Research, 87, 293–300. WMO., 2011, Manual on codes, international codes. Technical Report, World Meteorological Organization, Geneva Switzerland. Yoshino, M., 1975, Climate in a Small Area: An introduction to Local Meteorology. University of Tokyo Press, Tokyo pp. 549. Zouzoua, M., Lohou, F., Assamoi, P., Lothon, M., Yoboue, V., Dione, C., Kalthoff, N., Adler, B., Babić, K., Pedruzo-Bagazgoitia, X., and Derrien, S., 2021, Breakup of nocturnal low-level stratiform clouds during the southern West African monsoon season. Atmospheric Chemistry and Physics, 21, 2027–2051, https://doi.org/10.5194/acp-21-2027-2021