بررسی تأثیر تعداد اعضای یک سامانه همادی بر دقت پیش بینی بارش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری، پژوهشگاه هواشناسی و علوم جو، تهران، ایران.

2 دانشیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

10.30467/nivar.2023.375268.1233

چکیده

ارزش اقتصادی و کارایی پیش‌بینی‌های احتمالاتی بیشتر از پیش‌بینی‌های یقینی متناظر است. در مراکز پیشرفته پیش‌بینی وضع هوا، صدور پیش‌بینی‌های احتمالاتی از اهمیت زیادی برخوردار است. در این پژوهش، ابتدا یک سامانه همادی 18 عضوی تشکیل شده است که هر یک از اعضای آن یک اجرای مستقل از مدل WRF با یک پیکربندی‌ فیزیکی خاص است. به علت وجود محدودیت‌های سخت افزاری، دستیابی به یک سامانه همادی با تعداد اعضای کمتر و حفظ کارایی یک هدف اصلی است. در روش پس‌پردازش آماری BMA با توجه به تاریخچه خطای مدل در یک دوره آموزش به هر عضو همادی یک وزن تخصیص داده می‌شود. در این مطالعه، با حذف اعضاء با وزن کمتر، اندازه سامانه همادی به 7 عضو کاهش پیدا کرده است. مقایسه پیش‌بینی احتمالاتی به دست آمده از هر دو سامانه همادی نشان داد که سامانه همادی 7 عضوی دارای عملکردی مشابه با سامانه همادی 18 عضوی است. همچنین نتایج نشان می‌دهند که پیش‌بینی احتمالاتی صادر شده برای بارش تجمعی 24 ساعته از مهارت کافی برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of the ensemble system size on the precipitation forecast accuracy

نویسندگان [English]

  • Atefeh Mohamadi 1
  • Majid Azadi 2
1 Phd, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
2 Associate Professor, Atmospheric Science and Meteorological Research Center (ASMERC) ), Tehran, Iran
چکیده [English]

Numerical weather prediction (NWP) models are not completely accurate and error free, and there is always some uncertainty. The errors in weather forecasting stem from the limitations of human theoretical understanding of the atmosphere and the operational capacity to produce forecasts. It is necessary to make a forecast, along with an estimate of its uncertainty. This is accomplished by creating ensemble systems of weather forecasts differing in the initial conditions or physical formulation of NWP models. There are several methods for post-processing of ensemble forecasting, including Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS) that they are more popular because of higher efficiency and accuracy. In this research, first, an 18-member ensemble system is formed, which each member is an independent run of the WRF model with different physical configurations. BMA method was used to estimate the density function of predicting 24-hour cumulative precipitation. Due to some hardware limitations and access to an ensemble system with fewer number and more efficient members, the size of the ensemble system has been reduced to 7 members. Using the BMA method, a weight is assigned to each ensemble member. The size of the ensemble system is reduced by removing the members who had less weight. The probabilistic prediction verification obtained from the 7-member ensemble system in a test period from 15 January 2020 to 15 May 2020 has been checked using reliability diagram. The results show that the probabilistic predictions are sufficiently skilled for 24-hour cumulative precipitation.

کلیدواژه‌ها [English]

  • Numerical weather prediction
  • probabilistic forecast
  • ensemble system
  • WRF model
  • BMA ensemble post-processing method
1.    آزادی، م.، محمدی، س. ع.، 1398، پیش‌بینی احتمالاتی دماهای کمینه و بیشینه روزانه برای ایران با استفاده از سامانه همادی دو عضوی، نیوار، 43، 57-66. 
2.    ده‌ملائی، م.، رضازاده، م.، آزادی، م.، 1400، بررسی پیش‌بینی‌ احتمالاتی سرعت باد ده متری با استفاده از دو روش پس‌پردازش همادی، پژوهش‌های اقلیم شناسی، 48، 69-84.
3.    فتحی، م.، آزادی، م.، کمالی، غ.، مشکوتی، ا. م.، 1397، واسنجی پیش‌بینی احتمالاتی بارش برونداد سامانه همادی به روش میانگین‌گیری بایزی روی ایران، نشریه هواشناسی و علوم جو، 2:1، 114-129.
4.    Baran, S., 2014. Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components. Computational Statistics and Data Analysis, 75, 227-238.
5.    Díaz, M., Nicolis, O., Marín, J.C. and Baran, S., 2019. Statistical post-processing of ensemble forecasts of temperature in Santiago de Chile. Meteorological Application, 27(1), 1-12.
6.    Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T., 2005. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133, 1098-1118.
7.    Lang, M.N., Lerch, S., Mayr, G.J., Simon, T., Stauffer, R., Zeileis, A., 2020. Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression: Nonlinear Process. Geophys, 27, 23–34.
8.    Mohammadi, S. A., Rahmani, M., Azadi, M., 2016. Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts. Meteorology and Atmospheric Physics, 128, 429–440.
9.    Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M., 2005. Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133, 1155-1174.
10.    Scheuerer, M. and Hamill, T. M., 2015. Statistical post-processing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Monthly Weather Review, 143, 4578–4596.
11.    Schmeits, M.J. and Kok, K.J., 2010. A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Monthly Weather Review, 138(11), 4199–4211.
12.    Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Liu, Z., Berner, J., Wang, W., Powers, G., Duda, G., Barker, D.M., & Huang, X., 2019. A Description of the Advanced Research WRF Model Version 4. Computer Science.
13.    Sloughter, J. M., Gneiting, T. and Raftery, A. E., 2010. Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. Journal of the American Statistical Association, 105, 25-37.
14.    Sloughter, J. M., Raftery, A. E., Gneiting, T. and Fraley, C., 2007. Probabilistic 
        quantitative precipitation forecasting using    Bayesian model averaging. Monthly Weather Review, 135, 3209-3220.
15.    Soltanzadeh, I., Azadi, M. and Vakili, G.A., 2011. Using Bayesian model averaging (BMA) to calibrate probabilistic surface 
 
        temperature forecasts over Iran. Annales de    Geophysique, 29, 1295–1303.
16.    Vannitsem, S., Wilks, D.S. and Messner, J., 2019. Statistical Postprocessing of Ensemble Forecasts. Amsterdam, Netherlands: Elsevier.
17.    Wilks, D. S., 2019. Statistical Methods in the Atmospheric Sciences. New York: Elsevier.