نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه هرمزگان

10.30467/nivar.2022.199862.1138

چکیده

در این مطالعه، با توجه به اهمیت کمیت‌های دما و شوری در شناخت پدیده‌های دریایی، سعی شده است تغییرات این کمیت‌ها با استفاده از داده‌های WOA13 بررسی گردد و شرایط هر یک از این کمیت‌ها در فصول مختلف سال و در عمق‌های متفاوت تعیین گردد. ازاین‌رو با انتخاب مجموعه داده‌های تاریخچه‌ای پایگاه داده WOA13 که به شکل میانگین فصلی دما و شوری در بازه‌ی زمانی 2005 تا 2012 است، به روش درون‌یابی IDWاقدام به ترسیم نقشه‌های دما و شوری در سطح، عمق 5، 20 و 50 متری شده است. به‌منظور شناخت نحوه‌ی تغییرات این کمیت‌ها در عمق نیز نقشه مقطع پروفایل عمودی در 6 خط مختلف ایجاد شده است. همچنین در ادامه نتایج حاصل نیز با کارهای صورت گرفته در منطقه‌ی موردمطالعه، مقایسه شده است. با توجه به این داده‌ها می‌توان نتیجه گرفت؛ در خلال تغییر فصل از زمستان به تابستان، شوری و دما از دریای عمان به بخش شمالی خلیج فارس افزایش پیدا می‌کند و در فصل پاییز همراه با کاهش است. این امر به‌خوبی چرخه ترموهالاین منطقه را تشریح می‌کند، همچنین به ترتیب بیشترین و کمترین میزان شوری در بخش شمالی خلیج فارس و دریای عمان، تجربه می‌شود و به ترتیب بیشترین و کمترین میزان دما مربوط به بخش مرکزی خلیج فارس (فصل تابستان) و بخش شمالی خلیج فارس (در فصل‌های زمستان و بهار) است.

کلیدواژه‌ها

عنوان مقاله [English]

A review study of the temperature and salinity of southern Iranian waters in 2005 - 2012 using WOA13 data

نویسندگان [English]

  • danial ghaderi
  • Mostafa Solgi
  • Mehrnaz Farzingohar

University of Hormozgan

چکیده [English]

In this study, considering the importance of temperature and salinity parameters in recognizing marine phenomena, changes of these parameters were investigated using WOA13 data and the conditions of each of these parameters were determined at different seasons and at different depths. Therefore, by selecting WOA13 historical data, which is the seasonal mean of temperature and salinity over the period 2005 to 2012, IDW interpolation maps of salinity and temperature at the surface, 5, 20 and 50 m were performed. In order to understand how these parameters change in depth, vertical profile cross sections maps have been created in 6 different lines. Also, the results are compared with the studies in the study area. According to the data and results it can be concluded; As the seasons change from winter to summer, salinity and temperature increase from the Oman Sea to the northern part of the Persian Gulf and decrease with autumn, This well describes the thermohaline cycle of the region. It also experiences the highest and lowest salinity in the northern part of the Persian Gulf and the Oman Sea, respectively. And, the highest and lowest temperatures, respectively, are in the central part of the Persian Gulf (summer season) and the northern part of the Persian Gulf (in winter and spring).

کلیدواژه‌ها [English]

  • Salinity changes
  • temperature changes
  • Persian Gulf
  • Gulf of Oman
  • WOA13
1-Yao, F. and W.E. Johns, A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. Journal of Geophysical Research: Oceans, 2010. 115(C11). 2-Alessi, C.A., H.D. Hunt, and A.S. Bower, Hydrographic Data from the US Naval Oceanographic Office: Persian Gulf, Southern Red Sea, and Arabian Sea 1923-1996. 1999, WOODS HOLE OCEANOGRAPHIC INSTITUTION MA. 3- N. Al- Majed, H. Mohammadi and A. Al- Ghdban, Regional report of the State of the Marine environment. (ROPME). 187 pp, 2000 4-Pous, S., Lazure, P. and Carton, X.,. A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability. Continental Shelf Research, 2015, 94, pp.55-70. 5-Reynolds, R.M., Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 1993. 27: p. 35-59. 6-Alamdari, P., O. Nematollahi, and M. Mirhosseini, Assessment of wind energy in Iran: A review. Renewable and Sustainable Energy Reviews, 2012. 16(1): p. 836-860. 7-Noori, R., et al., Recent and future trends in sea surface temperature across the Persian Gulf and Gulf of Oman. PloS one, 2019. 14(2): p. e0212790. 8-Searle, M., Musandam Peninsula and Straits of Hormuz, in Geology of the Oman Mountains, Eastern Arabia. 2019, Springer. p. 129-146. 9-Piontkovski, S.A., et al., A comparison of seasonal variability of Arabian Gulf and the Sea of Oman pelagic ecosystems. Aquatic Ecosystem Health Management, 2019(just-accepted): p. 1-22. 10-Hastenrath, S. and L. Greischar, The monsoonal current regimes of the tropical Indian Ocean: Observed surface flow fields and their geostrophic and wind‐driven components. Journal of Geophysical Research: Oceans, 1991. 96(C7): p. 12619-12633. 11-Amante, C. and B.W. Eakins, ETOPO1 arc-minute global relief model: procedures, data sources and analysis. Marine Geology and Geophysics Division, 2009. 19. 12-Al-Rabeh, A., H. Cekirge, and N. Gunay, Modeling the fate and transport of Al-Ahmadi oil spill. Water, Air, Soil Pollution, 1992. 65(3-4): p. 257-279. 13-Sheppard, C.R., Physical environment of the Gulf relevant to marine pollution: an overview. Marine Pollution Bulletin, 1993. 27: p. 3-8. 14-Alosairi, Y., J. Imberger, and R.A. Falconer, Mixing and flushing in the persian gulf (Arabian gulf). Journal of Geophysical Research: Oceans, 2011. 116(C3). 15-Hunter, J., Aspects of the dynamics of the residual circulation of the Arabian Gulf, in Coastal oceanography. 1983, Springer. p. 31-42. 16-Sadrinasab, M. and J. Kämpf, Three‐dimensional flushing times of the Persian Gulf. Geophysical research letters, 2004. 31(24). 17-Uchupi, E., S. Swift, and D. Ross, Morphology and late quaternary sedimentation in the Gulf of Oman Basin. Marine Geophysical Researches, 2002. 23(2): p. 185-208. 18-Pous, S., X. Carton, and P. Lazure, Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: 2. Gulf of Oman. Journal of Geophysical Research: Oceans, 2004. 109(C12). 19-Locarnini, R.A., et al., World ocean atlas 2013. Volume 1, Temperature. 2013. 20-Zweng, M.M., et al., World ocean atlas 2013. Volume 2, Salinity. 2013. 21-Gouretski, V., World Ocean Circulation Experiment-Argo Global Hydrographic Climatology. Ocean Science, 2018. 14(5). 22-Ali, A., et al. Comparison of different Geostatistical Approaches to map Sea Surface Temperature (SST) of Southern South China Sea. in EGU General Assembly Conference Abstracts. 2013. 23-Escudero, L. and V. Rivera, Distribution of Peruvian Anchovy Fleets in Relation to Oceanic Parameters. Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation Management, 2011. 14. 24-Huchhe, M.R. and N. Bandela, Study of Water Quality Parameter Assessment using GIS and Remote Sensing in DR. BAM University, Aurangabad, MS. International Journal of Latest Technology in Engineering, Management Applied Science, 2016. 5(6): p. 46-50. 25-Jiang, Q., et al., Assessing the severe eutrophication status and spatial trend in the coastal waters of Zhejiang province (China). Limnology Oceanography, 2019. 64(1): p. 3-17. 26-Selao, A., et al. Remote Chlorophyll-a and SST to Determination of Fish Potential Area in Makassar Strait Waters Using MODIS Satellite Data. in IOP Conference Series: Earth and Environmental Science. 2019. IOP Publishing. 27-Kämpf, J. and M. Sadrinasab, The circulation of the Persian Gulf: a numerical study. Ocean Science, 2006. 2(1): p. 27-41. 28-Swift, S.A. and A.S. Bower, Formation and circulation of dense water in the Persian/Arabian Gulf. Journal of Geophysical Research: Oceans, 2003. 108(C1): p. 4-1-4-21. 29-Hosseinibalam, F., S. Hassanzadeh, and A. Rezaei-Latifi, Three-dimensional numerical modeling of thermohaline and wind-driven circulations in the Persian Gulf. Applied Mathematical Modelling, 2011. 35(12): p. 5884-5902. 30-Chao, S.Y., T.W. Kao, and K.R. Al‐Hajri, A numerical investigation of circulation in the Arabian Gulf. Journal of Geophysical Research: Oceans, 1992. 97(C7): p. 11219-11236.