مروری بر مطالعات تاثیرات تغییرات اقلیمی بر طوفان‌های حاره‌ای

نوع مقاله : مقاله ترویجی

نویسندگان

1 دکتری هواشناسی، گروه عملیات ویژه و شناسایی ساحل دانشگاه علوم دریایی امام خمینی (ره) نوشهر

2 دکتری اقیانوس‌شناسی، دانشکده علوم و فنون دریایی دانشگاه هرمزگان

3 دکتری هواشناسی، کارشناس پیش بینی استان هرمزگان

10.30467/nivar.2022.322810.1210

چکیده

این مقاله درصدد است، به بررسی تاثیرات تغییرات اقلیمی بر طوفان‌های حاره‌ای بپردازد. مطالعه حاضر با بهره‌گیری و بررسی منابع کتابخانه‌ای موجود انجام گرفته است. نتایج نشان می دهد که گرم شدن سطح اقیانوس منجر به طوفان‌های حاره‌ای شدیدتر می شود. از طرف دیگر با بالا آمدن سطح آب اقیانوس، قدرت تخریب طوفان ها در مناطق ساحلی بیشتر خواهد شد. افزایش سطح دریا خود ناشی از تغییرات آب‌وهوایی می‌باشد. از طرفی پیش‌بینی می‌شود که نسبت طوفان‌های حاره‌ای بسیار شدید (درجه 4 و 5) افزایش یابد، این درصورتی است که اکثر مطالعات مدل آب‌وهوایی پیش‌بینی می‌کنند که تعداد کل طوفان حاره‌ای در هر سال کاهش یا تقریباً ثابت بماند. همچنین مدل‌ها پیش‌بینی می‌کنند که با گرم شدن کره زمین در دهه‌های آینده، برخی از مناطق افزایش در نرخ تشدید سرعت، انتقال عرض جغرافیای بیشینه شدت به سمت قطب یا کاهش حرکت روبه‌جلو طوفان حاره‌ای را تجربه خواهند کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the changes in the nature of tropical cyclones due to climate change

نویسندگان [English]

  • mehriar alimohammadi 1
  • mohammad pakhirehzan 2
  • Saeedeh Kharazmi 3
1 PhD in Meteorology, Department of Special Operations and Coast reconnaissance, Imam Khomeini University of Marine Sciences, Nowshahr
2 Ph.D. in Oceanography, Faculty of Marine Science and Technology, Hormozgan University
3 Doctor of meteorology, forecasting expert of Hormozgan province
چکیده [English]

This article aims to investigate the effects of climate change on tropical cyclones. The present study has been carried out by using and examining the available library resources. The results show that ocean surface warming leads to more intense tropical storms. On the other hand, with the rise of the ocean water level, the destructive power of storms in coastal areas will increase. The rise of the sea level itself is caused by climate change. On the other hand, the proportion of very intense tropical cyclones (Category 4 and 5) is projected to increase, even though most climate model studies predict that the total number of tropical cyclones per year will decrease or remain nearly constant. Also, models predict that as the Earth warms in the coming decades, some regions will experience an increase in the rate of intensification, a poleward shift of the geographic latitude of the maximum intensity, or a decrease in tropical cyclone forward motion. Keywords: Tropical Cyclone, Climate Change, Foresight

کلیدواژه‌ها [English]

  • Tropical Cyclone
  • Climate Change
  • Forecast
1.    علی محمدی, مهریار, ملکوتی, حسین, راه بانی, مریم, الهی, سعید. (1399). بررسی زمان و نحوه‌ی شکل‌گیری طوفان‌های حاره‌ای در منطقه‌ی تحت ماموریت نداجا (شمال اقیانوس هند). دریا فنون, 7(2), 99-111.
2.    علی محمدی, مهریار, ملکوتی, حسین, راهبانی, مریم, محمدی, علی. (1399). ارزیابی تأثیرات دمای سطح دریا در شبیه‌سازی شدت و مسیر طوفان حاره‌ای گونو. فصلنامه علمی علوم و فنون آبخاکی, 1(1), 1-12. doi: 10.22034/jamst.2020.247201
3.    Alexander, L., Allen, S., & Bindoff, N. L. (2013). Working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science basis summary for policymakers (No. Bajados de Internet/2013). OPCC.
4.    Alimohammadi, M., Malakooti, H., & Rahbani, M. (2021). Sea surface temperature effects on the modelled track and intensity of tropical cyclone Gonu. Journal of Operational Oceanography, 1-17.
5.    Bhatia, K. T., Vecchi, G. A., Knutson, T. R., Murakami, H., Kossin, J., Dixon, K. W., & Whitlock, C. E. (2019). Recent increases in tropical cyclone intensification rates. Nature communications, 10(1), 1-9.
6.    Chen, Y. M., Chen, C. W., Chao, Y. C., Tung, Y. S., Liou, J. J., Li, H. C., & Cheng, C. T. (2020). Future Landslide characteristic assessment using ensemble climate change scenarios: A case study in Taiwan. Water, 12(2), 564.
7.    Colbert, A. J., Soden, B. J., & Kirtman, B. P. (2015). The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. Journal of Climate, 28(5), 1806-1823.
8.    Davis, C. A. (2018). Resolving tropical cyclone intensity in models. Geophysical Research Letters, 45(4), 2082-2087.
9.    Diro, G. T., Giorgi, F., Fuentes-Franco, R., Walsh, K. J. E., Giuliani, G., & Coppola, E. (2014). Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Climatic change, 125(1), 79-94.
10.    Dunstone, N. J., Smith, D. M., Booth, B. B. B., Hermanson, L., & Eade, R. (2013). Anthropogenic aerosol forcing of Atlantic tropical storms. Nature Geoscience, 6(7), 534-539.
11.    Emanuel, K. (2017). Will global warming make hurricane forecasting more difficult?. Bulletin of the American Meteorological Society, 98(3), 495-501.
12.    Emanuel, K. A. (2013). Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences, 110(30), 12219-12224.
13.    Garner, A. J., Mann, M. E., Emanuel, K. A., Kopp, R. E., Lin, N., Alley, R. B., ... & Pollard, D. (2017). Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proceedings of the National Academy of Sciences, 114(45), 11861-11866.
14.    Gutmann, E. D., Rasmussen, R. M., Liu, C., Ikeda, K., Bruyere, C. L., Done, J. M., ... & Veldore, V. (2018). Changes in hurricanes from a 13-yr convection-permitting pseudo–global warming simulation. Journal of Climate, 31(9), 3643-3657.
15.    Hassanzadeh, P., Lee, C. Y., Nabizadeh, E., Camargo, S. J., Ma, D., & Yeung, L. Y. (2020). Effects of climate change on the movement of future landfalling Texas tropical cyclones. Nature communications, 11(1), 1-9.
16.    Hsieh, T. L., Vecchi, G. A., Yang, W., Held, I. M., & Garner, S. T. (2020). Large-scale control on the frequency of tropical cyclones and seeds: a consistent relationship across a hierarchy of global atmospheric models. Climate Dynamics, 55(11), 3177-3196.
17.    Klotzbach, P. J., Caron, L. P., & Bell, M. M. (2020). A statistical/dynamical model for North Atlantic seasonal hurricane prediction. Geophysical Research Letters, 47(20), e2020GL089357.
18.    Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C. H., Kossin, J., ... & Wu, L. (2019). Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bulletin of the American Meteorological Society, 100(10), 1987-2007.
19.    Kossin, J. P. (2017). Hurricane intensification along United States coast suppressed during active hurricane periods. Nature, 541(7637), 390-393.
20.    Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 558(7708), 104-107.
21.    Kossin, J. P. (2019). Reply to: Moon, I.-J. et al.; Lanzante, JR. Nature, 570(7759), E16-E22.
22.    Kossin, J. P., Emanuel, K. A., & Camargo, S. J. (2016). Past and projected changes in western North Pacific tropical cyclone exposure. Journal of Climate, 29(16), 5725-5739.
23.    Kossin, J. P., Emanuel, K. A., & Vecchi, G. A. (2014). The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509(7500), 349-352.
24.    Kossin, J. P., Knapp, K. R., Olander, T. L., & Velden, C. S. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences, 117(22), 11975-11980.
25.    Landsea, C. W., Vecchi, G. A., Bengtsson, L., & Knutson, T. R. (2010). Impact of duration thresholds on Atlantic tropical cyclone counts. Journal of Climate, 23(10), 2508-2519.
26.    Lanzante, J. R. (2019). Uncertainties in tropical-cyclone translation speed. Nature, 570(7759), E6-E15.
27.    Little, C. M., Horton, R. M., Kopp, R. E., Oppenheimer, M., Vecchi, G. A., & Villarini, G. (2015). Joint projections of US East Coast sea level and storm surge. Nature Climate Change, 5(12), 1114-1120.
28.    Liu, J., Zhang, F., & Pu, Z. (2017). Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes. Advances in Atmospheric Sciences, 34(4), 482-496.
29.    Liu, M., Yang, L., Smith, J. A., & Vecchi, G. A. (2020). Response of extreme rainfall for landfalling tropical cyclones undergoing extratropical transition to projected climate change: Hurricane Irene (2011). Earth's future, 8(3), e2019EF001360.
30.    Lok, C. C., & Chan, J. C. (2018). Changes of tropical cyclone landfalls in South China throughout the twenty-first century. Climate Dynamics, 51(7), 2467-2483.
31.    Mallard, M. S., Lackmann, G. M., & Aiyyer, A. (2013). Atlantic hurricanes and climate change. Part II: Role of thermodynamic changes in decreased hurricane frequency. Journal of climate, 26(21), 8513-8528.
32.    Marsooli, R., Lin, N., Emanuel, K., & Feng, K. (2019). Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nature communications, 10(1), 1-9.
33.    Mei, W., & Xie, S. P. (2016). Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience, 9(10), 753-757.
34.    Mohapatra, M., Geetha, B., Balachandran, S., & Rathore, L. S. (2015). On the tropical cyclone activity and associated environmental features over North Indian Ocean in the context of climate change. Journal of Climate Change, 1(1, 2), 1-26.
35.    Moon, M., & Ha, K. J. (2021). Abnormal activities of Tropical Cyclones in 2019 over the Korean Peninsula. Geophysical Research Letters, 48(7), e2020GL090784.
36.    Murakami, H., Delworth, T. L., Cooke, W. F., Zhao, M., Xiang, B., & Hsu, P. C. (2020). Detected climatic change in global distribution of tropical cyclones. Proceedings of the National Academy of Sciences, 117(20), 10706-10714.
37.    Murakami, H., Vecchi, G. A., & Underwood, S. (2017). Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nature Climate Change, 7(12), 885-889.
38.    Rao, J., Garfinkel, C. I., & White, I. P. (2020). Projected strengthening of the extratropical surface impacts of the stratospheric quasi‐biennial oscillation. Geophysical Research Letters, 47(20), e2020GL089149.
39.    Risser, M. D., & Wehner, M. F. (2017). Attributable human‐induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophysical Research Letters, 44(24), 12-457.
40.    Sobel, A. H., Camargo, S. J., Barnston, A. G., & Tippett, M. K. (2016). Northern hemisphere tropical cyclones during the quasi-El Niño of late 2014. Natural Hazards, 83(3), 1717-1729.
41.    Staten, P. W., Grise, K. M., Davis, S. M., Karnauskas, K. B., Waugh, D. W., Maycock, A. C., ... & Son, S. W. (2020). Tropical widening: From global variations to regional impacts. Bulletin of the American Meteorological Society, 101(6), E897-E904.
42.    Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y., & Fasullo, J. (2018). Hurricane Harvey links to ocean heat content and climate change adaptation. Earth's Future, 6(5), 730-744.
43.    van Oldenborgh, G. J. (2017). Interactive comment on “Extreme heat in India and anthropogenic climate change” by Geert Jan van Oldenborgh et al. future, 39, L18710.
44.    Vecchi, G. A., & Knutson, T. R. (2011). Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. Journal of Climate, 24(6), 1736-1746.
45.    Vecchi, G. A., Delworth, T. L., Murakami, H., Underwood, S. D., Wittenberg, A. T., Zeng, F., ... & Yang, X. (2019). Tropical cyclone sensitivities to CO 2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Climate Dynamics, 53(9), 5999-6033.
46.    Villarini, G., & Vecchi, G. A. (2012). North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes. Journal of climate, 25(2), 625-637.
47.    Villarini, G., & Vecchi, G. A. (2013). Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. Journal of Climate, 26(10), 3231-3240.
48.    Walsh, K. J., Jawin, E. R., Ballouz, R. L., Barnouin, O. S., Bierhaus, E. B., Connolly, H. C., ... & Lauretta, D. S. (2019). Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nature Geoscience, 12(4), 242-246.
49.    Wang, S., & Toumi, R. (2021). Recent tropical cyclone changes inferred from ocean surface temperature cold wakes. Scientific reports, 11(1), 1-8.
50.    Wehner, M., Reed, K. A., Stone, D., Collins, W. D., & Bacmeister, J. (2015). Resolution dependence of future tropical cyclone projections of CAM5. 1 in the US CLIVAR Hurricane Working Group idealized configurations. Journal of Climate, 28(10), 3905-3925.
51.    Wright, D. B., Knutson, T. R., & Smith, J. A. (2015). Regional climate model projections of rainfall from US landfalling tropical cyclones. Climate dynamics, 45(11), 3365-3379.
52.    Xiang, Y., & Lam, P. J. (2020). Size‐Fractionated Compositions of Marine Suspended Particles in the Western Arctic Ocean: Lateral and Vertical Sources. Journal of Geophysical Research: Oceans, 125(8), e2020JC016144.
53.    Zhang, H., Liu, X., Wu, R., Chen, D., Zhang, D., Shang, X., ... & Zhang, W. (2020). Sea surface current response patterns to tropical cyclones. Journal of Marine Systems, 208, 103345.
54.    Zhang, W., Villarini, G., Vecchi, G. A., & Smith, J. A. (2018). Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature, 563(7731), 384-388.