نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا/ پژوهشگاه هواشناسی و علوم جو

2 عضو هیات علمی پژوهشکده هواشناسی

3 عضو هیات علمی پژوهشکده هواشناسی/ پژوهشگاه هواشناسی و علوم جو- .

4 دانشیار و عضو هیات علمی پژوهشگاه هواشناسی

5 هیات علمی / پژوهشکده هواشناسی

10.30467/nivar.2021.307166.1202

چکیده

در این تحقیق شبیه‌سازی عددی دو رخداد مه فرارفتی و تابشی در فرودگاه اردبیل در ژانویه 2015 با استفاده از برونداد مدل میان مقیاس WRF و الگوریتم‌ دید SW99 برای پیش‌بینی دید افقی انجام شد. برای بررسی حساسیت پیش‌بینی مه به طرحواره لایه مرزی سیاره‌ای (PBL)، از 6 طرحواره‌ی YSU، MYJ، ACM2، MYNN2.5، MYNN3 و QNSE استفاده شد. نتایج نشان داد که شبیه‌سازی این دو رخداد مه به فرآیندهای لایه مرزی سیاره‌ای حساس است. همچنین به دلیل ارتباط پیش‌بینی مه به کمیت‌های دما، دمای نقطه شبنم، نم نسبی و سرعت باد، حساسیت شبیه‌سازی این متغیرها نیز به طرحواره‌های PBL مورد بررسی قرار گرفت. نتایج نشان داد که شبیه‌سازی مه فرارفتی با بیشتر طرحواره‌های PBL با موفقیت انجام شد و طرحواره‌های YSU، ACM2 و MYNN2.5 عملکرد بهتری در شبیه‌سازی مه فرارفتی داشتند. طرحواره QNSE در شبیه‌سازی مه فرارفتی موفق نبود. در شبیه‌سازی مه تابشی، بیشتر طرحواره‌های PBL قادر به شبیه‌سازی نم نسبی مورد نیاز برای تشکیل مه در زمان رخداد مه نبودند و چند ساعت قبل از شروع رخداد مه تابشی، مدل ‌WRF با بیشتر طرحواره‌ها کاهش دید ناشی از رخداد مه را شبیه‌سازی کرد. به طور کلی طرحواره‌های QNSE و MYJ نسبت به طرحواره‌های دیگر عملکرد ضعیف‌تری در شبیه‌سازی دما، دمای نقطه شبنم، نم نسبی و سرعت باد داشتند.

کلیدواژه‌ها

عنوان مقاله [English]

Sensitivity Study of Simulations of Two Fog Events at Ardebil Airport to the PBL Scheme, Using WRF model

نویسندگان [English]

  • Razieh Pahlavan 1
  • Mohammad Moradi 2
  • Sahar Tajbakhsh 3
  • Majid Azadi 4
  • Mehdi Rahnama 5

1 Ph.D. Student, Atmospheric Science and Meteorological Research Center

2 Faculty member of Meteorological Research Institute

3 Assistant Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran

4 Associate Professor, Atmospheric Science and Meteorological Research Center

5 Assistant Professor, Atmospheric Science and Meteorological Research Center

چکیده [English]

In this study, numerical simulation of two advection and radiation fog events at Ardabil Airport in January 2015 was performed using the Weather Research and Forecasting (WRF) model and SW99 visibility algorithm. Six Planetary Boundary Layer (PBL) schemes including YSU, MYJ, ACM2, MYNN2.5, MYNN3 and QNSE were used to evaluate the sensitivity of fog simulation to the PBL schemes. The results show that the simulation of these two fog events is sensitive to PBL. Also, due to the importance of accurate prediction of 2-m relative humidity, temperature and dew point temperature and 10-m wind speed in fog forecasting, the sensitivity of simulation of these variables to PBL scheme was investigated. The results showed that the simulation of advection fog event was successfully performed using most of PBL schemes mentioned above. YSU, ACM2 and MYNN2.5 schemes performed better in simulation of advection fog. The QNSE scheme was not successful in simulating the advection fog event. In radiant fog simulation, most PBL schemas were not able to simulate the moisture required to form fog at the time of fog occurrence.
Most PBL schemes were not able to simulate the moisture required for formation of fog at the time of the radiation fog event. A few hours before the onset of the radiation fog event, the WRF model with most schemes simulated the visibility reduction due to the fog. Generally, QNSE and MYJ schemes performed worse than other schemes in simulating temperature, dew point temperature, relative humidity and wind speed.

کلیدواژه‌ها [English]

  • WRF Model
  • Advection Fog
  • Radiation Fog
  • Sensitivity
  • PBL Scheme
پهلوان، ر.، مرادی، م.، تاج بخش، س.، آزادی، م.، رهنما، م.، 1399، پیش‌بینی عددی چند رخداد مه تابشی و CBL با استفاده از مدل WRF روی برخی مناطق ایران: مطالعه موردی، 27 تا 31 دسامبر سال 2015، م. فیزیک زمین و فضا، 46(3)، 561-582. صلاحی، ب.، محمدی، س.، 1390، تحلیل همدید و آماری مه‌های فرودگاه اردبیل و ارائه‌ی ساعات مناسب پروازی: پژوهش‌های جغرافیای طبیعی، 77، 92-69. لایقی، ب.، قادر، س.، علی اکبری بیدختی، ع.، آزادی، م.، 1396، حساسیت‌سنجی شبیه‌سازی‌های مدل WRF به پارامترسازی‌های فیزیکی در محدوده خلیج فارس و دریای عمان در زمان مونسون تابستانی، مجله ژئوفیزیک ایران، 11، 1-19. محمدپورپنجاه، م.، ملکوتی، ح.، بهمنی جلالی، ه.، 1394، حساسیت‌سنجی مدل پیش‌بینی و تحقیقات جوی WRF به پارامترسازی‌های لایه مرزی به منظور مطالعه انرژی باد در منطقه جاسک: شانزدهمین کنفرانس دینامیک شاره‌ها، کرمانشاه، دانشگاه رازی. Anderson, J. L., 1996, Selection of initial conditions for ensemble forecasts in a simple perfect model framework: Journal of Atmospheric Science, 53, 22–36. Bang, C. H., Lee, J. W. and Hong, S.Y., 2009, Predictability experiments of fog and visibility in local airports over Korea using the WRF model: J. Korean Soc. Atmos. Environ., 24, 92–101. Bari, D., Bergot, T. and El Khlifi, M., 2015, Numerical study of a coastal fog event over Casablanca, Morocco: Quart. J. Roy. Meteor. Soc., 141, 1894–1905, doi: 10.1002/qj.2494. Bieringer, P., Donovan, M., Robasky, F., Clark, D. and Hurst, J., 2006, A characterization of NWP ceiling and visibility forecasts for the terminal airspace: 12th Conference on Aviation, Range and Aerospace Meteorology. Bergot, T. and Guedalia, D., 1994, Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests: Mon. Wea. Rev., 122, 1218–1230, https://doi.org/10.1175/1520-0493(1994)122,1218: NFORFP.2.0.CO;2. Bergot, T., Terradellas, E., Cuxart, J., Mira, A., Liechti, O., Mueller, M. and Nielsen, N.W., 2007, Intercomparison of single-column numerical models for the prediction of radiation fog: J. Appl. Meteor. Climatol., 46, 504–521, https://doi.org/10.1175/JAM2475.1. Bott, A., and Trautmann, T., 2002, PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds: Atmos. Res., 64, 191–203, doi: 10.1016/S0169-8095(02)00091-1. Clark, P.A. and Hopwood, W.P., 2001, One-dimensional site-specific forecasting of radiation fog. Part I: Model formulation and idealized sensitivity studies: Meteor. Appl., 8, 279–286, https://doi.org/10.1017/S1350482701003036. Creighton, G., Kuchera, E., Adams-Selin, R. et al., 2014, AFWA Diagnostics in WRF. [Accessed 10 July 2017 at http://www2. mmm.ucar.edu/wrf/users/docs/AFWA_Diagnostics_in_ WRF.pdf]. Doran, J. A., Roohr, P. J., Beberwyk, D. J., et al., 1999, The MM5 at the Air Force Weather Agency—New products to support military operations: The 8th Conference on Aviation, Range, and Aerospace Meteorology, NOAA/NWS, Dallas, Texas. Dudhia, J., 1989, Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model: J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 Fernando, H., Gultepe, I., Dorman, C., Pardyjak, E., Wang, Q., Hoch, S., Richter, D., Creegan, E., Gabersek, S., Bullock, T., Hocut, C., Chang, R., Alappattu, D., Dimitrova, R., Flagg, D., Grachev, A., Krishnamurthy, R., Singh, D., Lozovatsky, I. and Fernando, H., 2020, C-FOG: Life of Coastal Fog: Bulletin of the American Meteorological Society, 10.1175/BAMS-D-19-0070.1. Fu, G., Li, P. Y., Crompton, J. G., et al., 2010, An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003: Meteor. Atmos. Phys., 107, 149–159, doi:10.1007/s00703-010-0073-0. Golding, B. W., 1993: A study of the influence of terrain on fog development. Mon. Wea. Rev., 121, 2529–2541, doi:10.1175/1520-0493(1993)121<2529:ASOTIO>2.0.CO;2. Guedalia, D. and Bergot, T., 1994, Numerical forecasting of radiation fog. Part II: A comparison of model simulation with several observed fog events: Monthly Weather Review, 122, 1231–1246. Gultepe, I., Muller, M.D. and Boybeyi, Z., 2006, A new warm fog parameterization scheme for numerical weather prediction models: Journal of Applied Meteorology, 45, 1469–1480. Gultepe, I., Tardif, R., Michaelides, S. C., et al., 2007a, Fog research: A review of past achievements and future perspectives: Pure Appl. Geophys., 164, 1121–1159, doi:10.1007/s00024-007-0211-x. Gultepe, I., Pagowski, M. and Reid, J., 2007b, Using surface data to validate a satellite based fog detection scheme: Weather and Forecasting, 22, 444-456. Gultepe, I., Pearson, G., Milbrandt, J., Hansen, B., Platnick, S., Taylor, P., Gordon, M., Oakley, J. and Cober, S., 2009, The Fog Remote Sensing and Modeling Field Project. Bulletin of The American Meteorological Society, 90, 341-359. Gultepe, I. and Milbrandt, J. A., 2010, Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility: J. Appl. Meteor. Climatol., 49, 36–46,doi: 10.1175/2009JAMC1927.1. Gultepe, I., Zhou, B., Milbrandt, J., Bott, A., Li, Y., Heymsfield, A.J., Ferrier, B., Ware, R., Pavolonis, M., Kuhn, T., Gurka, J., Liu, P. and Cermak. J., 2015, A review on ice fog measurements and modeling: Atmospheric Research., 151, 2–19. 10.1016/j.atmosres.2014.04.014 Gultepe, I., Milbrandt, J.A., Zhou, B., 2017, Marine Fog: A Review on Microphysics and Visibility Prediction. In Koračin D. and Dorman C. Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45229-6_7 Gultepe, I., Sharman, R., Williams, P., Zhou, B., Ellrod, G., Minnis, P., Trier, S., Griffin, S., Yum, S., Gharabaghi, B., Feltz, W., Temimi, M., Dimri, A.P., Dietz, S., França, G., Almeida, M., Albuquerque, F., Pu, Z., Kneringer, P. and Thobois, L., 2019, A Review of High Impact Weather for Aviation Meteorology: Pure and Applied Geophysics. 176. 1869–1921. 10.1007/s00024-019-02168-6. Hong, S.Y., Noh, Y. and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes: Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1 Hong, S.-Y. and Lim, J.-O. J., 2006, The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) : J. Korean Meteor. Soc., 42, 129–151. Janjic, Z.I., 1994, The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes: Mon. Wea. Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122%3c0927:TSMECM%3e2.0.CO;2 Jones, R.H., 1965). Optimal estimation of initial conditions for numerical prediction. Journal of Atmospheric Science, 22, 658–663. Kleczek, M.A., Steeneveld, G.J. and Holtslag, A.A.M., 2014, Evaluation of the weather research and forecasting mesoscale model for GABLS3: Impact of boundarylayer schemes, boundary conditions and spin-up: Boundary-Layer Meteorology, 152, 213–243, https://doi.org/10.1007/s10546-014-9925-3. Lester, P., 2007, Aviation weather: Jeppesen Pub. U.S.A. Li, Y. P. and Zheng, Y. X., 2015, Analysis of atmospheric turbulence in the upper layers of sea fog: Chinese J. Oceanol. Limnol., 33, 809–818, doi: 10.1007/s00343-015-4030-0. Lin, C.-Y., Zhang, Z., Pu, Z. and Wang, F., 2017, Numerical simulations of an advection fog event over the Shanghai Pudong Airport with the WRF model: Journal of Meteorological Research, 31, 874–889. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave: J. Geophys. Res., 102, 16663–16682, https://doi.org/10.1029/97JD00237. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave: J. Geophys. Res., 102, 16663–16682, https://doi.org/10.1029/97JD00237. Monin, A. S., and Obukhov, A.M.F., 1954, Basic laws of turbulent mixing in the surface layer of the atmosphere: Contribution of Geophysical Institute of the Academy of Sciences of the USSR, 151, 163-187. Nakanishi, M., 2001, Improvement of the Mellor-Yamada Turbulence Closure Model based on large-eddy simulation data. Boundary-Layer Meteor. 99, 349-378. Nakanishi, M. and Niino, H., 2004, An improved Mellor–Yamada level-3model with condensation physics: Its design and verification: Boundary-Layer Meteorol., 112, 1–31. doi:10.1023/ B:BOUN.0000020164.04146.98. Nakanishi, M. and Niino, H., 2006, An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog: Bound.Layer Meteor., 119, 397–407, doi:10.1007/s10546-005-9030-8. Philip, A., Bergot, T., Bouteloup, Y. and Bouyssel, F., 2016, The impact of vertical resolution on fog forecasting in the kilometric-scale model AROME: A case study and statistics: Weather and Forecasting, 31, 1655-1671, https://doi.org/31. 10.1175/WAF-D-16-0074.1. Pithani, P., Ghude, S., Prabha, T., Karipot, A., Hazra, A., Kulkarni, R., Chowdhuri, S., Resmi, E.A., Konwar, M., Murugavel, P., Safai, P., Chate, D., Tiwari, Y., Jenamani, R. and Rajeevan, M., 2019a, WRF model sensitivity to choice of PBL and microphysics parameterization for an advection fog event at Barkachha, rural site in the Indo-Gangetic basin, India: Theoretical and Applied Climatology. 136, 1099–1113, https://doi.org/10.1007/S00704-018-2530-5. Pithani, P., Ghude, S., Naidu, C.V., Kulkarni, R., Steeneveld, G.J., Sharma, A., Prabha, T., Chate, D., Gultepe, I., Jenamani, R.K. and Rajeevan, M., 2019b, WRF model Prediction of a dense fog event occurred during Winter Fog Experiment (WIFEX): Pure and Applied Geophysics. 176, 1827-1846, https://doi.org/10.1007/s00024-018-2053-0. Pleim, J.E., 2007, A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteor. Climatol., 46, 1383–1395, https://doi.org/10.1175/JAM2539.1 Rémy, S., Pannekoucke, O., Bergot, T. et al., 2012, Adaptation of a particle filtering method for data assimilation in a 1D numerical model used for fog forecasting: Quart. J. Roy. Meteor. Soc., 138, 536–551, doi: 10.1002/qj.v138.663. Román-Cascón, C., Yague, C., Sastre, M., Maqueda, G., Salamanca, F. and Viana. S., 2012, Observations and WRF simulations of fog events at the Spanish Northern Plateau: Adv. Sci. Res., 8, 11–18, https://doi.org/10.5194/asr-8-11-2012. Román‐Cascón, C., Steeneveld, G.J., Yagüe, C., Sastre, M., Arrillaga, J.A. and Maqueda, G., 2016, Forecasting radiation fog at climatologically contrasting sites: evaluation of statistical methods and WRF: Q. J. R. Meteor. Soc., 142(695), 1048–1063. Roman-Cascón, C., Yagüe, C., Steeneveld, G. J., Morales, G., Arrillaga, J.A., Sastre, M., Maqueda, G., 2019, Radiation and cloud-base lowering fog events: Observational analysis and evaluation of WRF and HARMONIE: Atmospheric Research, 229, 190–207. Roquelaure, S. and Bergot, T., 2007, Seasonal sensitivity on COBEL-ISBA local forecast system for fog and low clouds: Pure and Applied Geophysics, 164, 1283–1301. Ryerson, W.R., 2012, Toward improving short-range fog prediction in data-denied areas using the Air Force Weather Agency mesoscale ensemble: Ph.D. thesis, Naval Postgraduate School, 225 pp. [Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA567345.] Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X., Wang, W., Powers, J.G., 2008, A description of the advanced research WRF version 3; NCAR Tech. Note (NCAR/TN-475+STR). National Center for Atmospheric Research: Boulder, CO, USA; p. 125. Steeneveld, G.J., Ronda, R. J. and Holtslag, A.A.M., 2015, The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models: Bound. Layer Meteor., 154(2), 265–289, https://doi.org/10.1007/s10546-014-9973-8. Stoelinga, M.T. and Warner T.T., 1999, Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event: J. Appl. Meteor., 38, 385–404, https://doi.org/10.1175/1520-0450(1999)038 <0385:NMSMSO>2.0.CO;2. Stolaki, S., Pytharoulis, I. and Karacostas, T., 2012, A study of fog characteristics using a coupled WRF–COBEL model over Thessaloniki airport, Greece: Pure Appl. Geophys., 169, 961–981, doi: 10.1007/s00024-011-0393-0. Sukoriansky, S., Galperin, B. and Perov, V., 2005, Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice: Bound.–Layer Meteor., 117, 231–257, https://doi.org/10.1007/s10546-004-6848-4 Tang, Y. M., Capon, R., Forbes, R., et al., 2009, Fog prediction using a very high resolution numerical weather prediction model forced with a single profile: Meteor. Appl., 16, 129–141, doi: 10.1002/met. v16:2. Tardif, R., 2004, On the impact of vertical resolution in the numerical forecasting of fog. Conference on Aviation, Range, and Aerospace Meteorology. Tardif, R., 2007, The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study: Pure Appl. Geophys., 164, 1221–1240, doi: 10.1007/s00024-007-0216-5. Tardif, R. and Rasmussen, R.M., 2007, Event-based climatology and typology of fog in the New York City region: Journal of Applied Meteorology and Climatology, 46, 1141-1168, https://doi.org/10.1175/JAM2516.1. Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J. and Cuenca. R.H., 2004, Implementation and verification of the unified NOAH land surface model in the WRF model: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15. Van der Velde, I.R., Steeneveld, G.J., Schreur, B.G.J.W. and Holtslag, A.A.M., 2010, Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions: Monthly Weather Review, 138(11), 4237-4253, https://doi.org/10.1175/2010MWR3427.1 Von Glasow, R. and Bott, A., 1999, Interaction of radiation fog with tall vegetation: Atmos. Environ., 33, 1333–1346, doi:10.1016/S1352-2310(98)00372-0. Wilkinson, J.M., Porson, A.N., Bornemann, F.J., Weeks, M., Field, P.R. and Lock. A.P., 2013, Improved microphysical parametrization of drizzle and fog for operational forecasting using the Met Office Unified Model: Q. J. R. Meteor. Soc., 139(671), 488-500. Zhou, B. and Du, J., 2010, Fog prediction from a multimodel mesoscale ensemble prediction system: Weather Forecasting, 25, 303–322.