نویسندگان

1 کارشناس ارشد مهندسی عمران

2 کارشناس پژوهشی پژوهشکده هواشناسی

3 دانشیار پژوهشکده هواشناسی

چکیده

با توجه به اهمیت روز افزون آگاهی از وضعیت هواشناسی کلیه مناطق کشور، لزوم انجام فرایند درون‌یابی برای نقاط بدون داده (فاقد ایستگاه) کاملاً آشکار است. در این مقاله ضمن مرور کلیات مفهوم درون‌یابی و بررسی اجمالی مبانی نظری دو روش درون‌یابی، نمونه‌ای از نتایج پهنه‌بندی دماهای کمینه و بیشینه (روزانه، ماهانه، فصلی و سالانه) روی کشور ارائه می‌شود. همچنین برای مقایسه، آنچه تاکنون و بدون در نظر گرفتنِ اثر ارتفاع در اختیار کاربران قرار می‌گیرد، به صورت متناظر آورده می‌شود. شایان گفتن است این نتایج حاصل پروژة مطالعاتی کوچکی است که در پژوهشکده هواشناسی انجام شده است. گروه پژوهشگران امید دارند که با اجرای این پروژه گام مفیدی برای بهبود و ارتقای کمّی و کیفی پهنه‌بندی‌های دمایی در سازمان هواشناسی کشور برداشته شده باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Analysis of Maximum and Minimum Daily, Monthly, Seasonal and Annual Surface Temperature over Iran Considering Topography

نویسندگان [English]

  • Saba Ghotbi 1
  • Majid Azadi 3

1 Master of Civil Engineering

3 Ph. D. of Meteorology, Associate Professor of ASMERC

چکیده [English]

Introduction
Considering the industrial development in recent years, the need for climatological atlas and also daily metrological data have increased and has become important economically. Air temperature is of special importance in our understanding of various natural processes in the nature. Moreover, in order to detect the impact of greenhouse gases on climate change and developing ecological models in various regions, much attention have been given to spatial distribution of temperature. Hence, developing and testing accurate interpolation methods for spatial analysis of temperature is this clear especially over data void regions. In order to successfully transfer information from irregularly distributed observing stations to a regular grid, information about physical characteristics of the region have to be taken into account. To reflect spatially complicated climate patterns at regional scales, climatic dependence on topography must be taken into account when developing reliable climate estimates.

کلیدواژه‌ها [English]

  • spatial distribution
  • Interpolation
  • Maximum Temperature
  • Minimum Temperature
1- بلیانی، ی.؛ حکیم‌دوست، س.؛ (1393). اصول و مبانی پردازش داده‌های مکانی (فضایی) با استفاده از روش‌های تحلیل فضایی، چاپ اول. انتشارات آزاده‌پیما، تهران. 2- Aalto, J.; Pirinen, P.; Heikkinen, J.; Venelainen, A. (2013). Spatial Interpolation of Monthly Climate Data for Finland: Comparing the Performance of Kriging and Generalized Additive Models, Theoretical and Applied Climatology, 112(1-2): 99-111. 3- Beliyani, Y.; Hakimdoost, S. (2014). An Introduction to Data Processing Using Spatial Analysis Techniques, 1st ed., Azadehpeyma Co., Tehran, (In Persian). 4- Bolstad, P.V.; Swift, L.; Collins, F.; Regniere, J. (1998). Measured and Predicted Air Temperatures at Basin to Regional Scales in the Southern Appalachian Mountains, Agricultural and Forest Meteorology, 91(3-4): 161-176. 5- Cheng, K.T. (2004). Introduction to Geographic Information System, McGraw Hill, NY. 6- Choi, J.; Chung, U.; Yun, J.I. (2003). Urban-Effect Correction to Improve Accuracy of Spatially Interpolated Temperature Estimates in Korea, Journal of Applied Meteorology, 42(12): 1711-1719. 7- Chuanyan, Z.; Zhongren, N.; Guodong, C. (2005). Methods for Modelling of Temporal and Spatial Distribution of Air Temperature at Landscape Scale in the Southern Qilian Mountains (China), Ecological Modelling, 189 (1): 209-220. 8- Chung, U.; Yun, J.I. (2004). Solar Irradiance-Corrected Spatial Interpolation of Hourly Temperature in Complex Terrain, Agricultural and Forest Meteorology, 126(1): 129-139. 9- Courault, D.; Monestiez, P. (1999). Spatial Interpolation of Air Temperature According to Atmospheric Circulation Patterns in Southeast France, International Journal of Climatology, 19(4): 365-378. 10- Daly, C.; Gibson, W.P.; Taylor, G.H.; Johnson, G.L.; Pasteris, P. (2002). A Knowledge-based Approach to the Statistical Mapping of Climate, Climate Research, 22(2): 99-113. 11- Daly, C. (2006). Guidelines for Assessing the Suitability of Spatial Climate Data Sets, International Journal of Climatology, 26(6): 707-721. 12- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P. (2008). Physiographically Sensitive Mapping of Climatological Temperature and Precipitation across the Conterminous United States, International Journal of Climatology, 28(15): 2031-2064. 13- Di Luzio, M.; Johnson, G.L.; Daly, C.; Eischeid, J.K. (2008). Constructing Retrospective Gridded Daily Precipitation and Temperature Datasets for the Conterminous United States, Journal of Applied Meteorology and Climatology, 47(2): 475-497. 14- Dodson, R.; Marks, D. (1997). Daily Air Temperature Interpolated at High Spatial Resolution over a Large Mountainous Region, Climate Research, 8(1): 1-20. 15- Garen, D.C.; Marks, D. (2005). Spatially Distributed Energy Balance Snowmelt Modelling in a Mountainous River Basin, Estimation of Meteorological Inputs and Verification of Model Results, Journal of Hydrology, 315(1): 126-153. 16- Hasenauer, H.; Merganicova, K.; Petritsch, R. (2003). Validating Daily Climate Interpolations over Complex Terrain in Austria, Agricultural and Forest Meteorology, 119(1): 87-107. 17- Hattis, D.; Ogneva-Himmelberger, Y.; Ratick, S. (2012). The Spatial Variability of Heat-Related Mortality in Massachusetts, Applied Geography, 33: 45-52. 18- Hock, R. (2003). Temperature Index Melt Modelling in Mountain Areas, Journal of Hydrology, 282: 104-115. 19- Hudson, G.; Wackernagel, H. (1994). Mapping Temperature Using Kriging with External Drift: Theory and an Example from Scotland, International Journal of Climatology, 14(1): 77-91. 20- Holdaway, M.R. (1996). Spatial Modeling and Interpolation of Monthly Temperature Using Kriging, Climate Research, 6(3): 215-225. 21- Jarvis, C.H.; Stuart, N. (2001). A Comparison among Strategies for Interpolating Maximum and Minimum Daily Air Temperatures; Part II: The Interaction Between Number of Guiding Variables and the Type of Interpolation Method, Journal of Applied Meteorology, 40(6): 1075-1084. 22- Kurzman, D.; Kadmon, R. (1999). Mapping of Temperature Variables in Israel: a Comparison of Different Interpolation Method, Climate Research, 13: 33-43. 23- Li, S.; Xie, Y.; Brown, D.G.; Bai, Y.; Hua, J.; Judd, K. (2013). Spatial Variability of the Adaptation of Grassland Vegetation to Climatic Change in Inner Mongolia of China, Applied Geography, 43: 1-12. 24- Li, X.; Cheng, G.; Lu, L. (2005). Spatial Analysis of Air Temperature in the Qinghai-Tibet Plateau, Arctic, Antarctic, and Alpine Research, 37(2): 246-252. 25- Liston, G.E.; Elder, K. (2006). A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet), Journal of Hydrometeorology, 7(2): 217-234. 26- Mahdian, M.H.; Rahimi Bandarabady, S.; Sokouti, R.; Norouzi Banis, Y. (2009). Appraisal of the Geostatistical Methods to Estimate Monthly and Annual Temperature, Journal of Applied Sciences, 9(1): 128-134. 27- Nalder, I.A.; Wein, R.W. (1998). Spatial Interpolation of Climatic Normals: Test of a New Method in the Canadian Boreal Forest, Agricultural and Forest Meteorology, 92(4): 211-225. 28- Powell, J.A. (2008). Ghost Forests, Global Warming and the Mountain Pine Beetle, American Entomologist. 29- Rolland, C. (2003). Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions, Journal of Climate, 16(7): 1032-1046. 30- Samanta, S.; Pal, D.K.; Lohar, D.; Pal, B. (2012). Interpolation of Climate Variables and Temperature Modeling, Theoretical and Applied Climatology, 107(1-2): 35-45. 31- Shen, S.S.P.; Dzikowski, P.; Li, G.; Griffith, D. (2001). Interpolation of 1961-97 Daily Temperature and Precipitation Data onto Alberta Polygons of Ecodistrict and Soil landscapes of Canada, Journal of Applied Meteorology, 40(12): 2162-2177. 32- Sluiter, R. (2008). Interpolation Methods for Climate Data: Literature Review, De Bilt, Royal Netherlands Meteorological Institute (KNMI). 33- Stahl, K.; Moore, R.D.; Floyer, J.A.; Asplin, M.G.; McKendry, I.G. (2006). Comparison of Approaches for Spatial Interpolation of Daily Air Temperature in a Large Region with Complex Topography and Highly Variable Station Density, Agricultural and Forest Meteorology, 139: 224-236. 34- Thornton, P.E.; Running, S.W.; White, M.A. (1997). Generating Surfaces of Daily Meteorological Variables over Large Regions of Complex Terrain, Journal of Hydrology, 190(3): 214-251. 35- Trisurat, Y.; Shrestha, R.P.; Kjelgren, R. (2011). Plant Species Vulnerability to Climate Change in Peninsular Thailand, Applied Geography, 31(3): 1106-1114. 36- Willmott, C.J.; Matsuura, K. (1995). Smart Interpolation of Annually Averaged Air Temperature in the United States, Journal of Applied Meteorology, 34(12): 2577-2586. 37- Xia, Y.; Fabian, P.; Winterhalter, M.; Zhao, M. (2001). Forest Climatology: Estimation and Use of Daily Climatological Data for Bavaria, Germany, Agricultural and Forest Meteorology, 106(2): 87-103. 38- Xiaopeng, Q.; Liang, W.; Barker, L.; Lekiachvili, A.; Xingyou, Z. (2012). Comparison of ArcGIS and SAS Geostatistical Analyst to Estimate Population-Weighted Monthly Temperature for US Counties, Journal of Resources and Ecology, 3(3): 220-229.