بررسی علل تفاوت عملکرد مدل عددی WRF در پیش بینی بارشِ سامانه های جوی مختلف از دیدگاه دینامیکی: مطالعه موردی

نویسندگان

1 استادیار، پژوهشگاه هواشناسی

2 دانشیار، پژوهشگاه هواشناسی

چکیده

: یکی از چالش‌های اساسیِ پیش‌بینی عددی وضع هوا، پیش‌بینی صحیحِ بارش به‌ویژه برای بارش­های همرفتی بهاری می­باشد. شناخت دینامیکی «عوامل مولد بارش»، ما را به سوی انتخاب «طرحواره­های مناسب­تر» جهت پیش­بینی دقیق­ترِ بارش رهنمون می­شود. مدل­ میان­مقیاس پیش­بینی عددی وضع‌هوا (WRF) دارای طرحواره­های پارامتر­سازی فیزیکی گسترده­ای است که انتخاب هر گروه از این طرحواره­ها می‌تواند در نتایج پیش­بینی­ مدل تأثیر قابل‌ملاحظه داشته باشد. اما گاهی علیرغم به کارگیری طرحواره‌های مختلف، بهبود کافی در دقت پیش‌بینی‌ حاصل نمی‌شود. بنابراین لازم است با توجه به عوامل مولدِ بارش، گزینه­های مناسب انتخاب شوند. بر این اساس، به منظور بررسی تأثیر عواملِ دینامیکیِ مسببِ ناپایداری و بارش بر انتخابِ طرحواره­هایِ فیزیکیِ مناسب، شبیه­سازی و مطالعۀ دو سامانه جوّی در فصل بهار با عوامل دینامیکی متفاوت انتخاب گردید. در مورد اول پیش­بینی نادرست بارش‌ شدید منجر به سیل در مناطق مرکزی کشور و در مورد دوم عدم پیش­بینی بارش سنگین در این مناطق، سبب مدیریت نامناسبِ دستگاه‌های مرتبط، به دلیل نبود هشدارهایِ لازم، شده است. ابتدا این دو سامانه از دیدگاه دینامیکی مورد مطالعه قرار گرفته و سپس با مدل میان­مقیاس WRF با 9 پیکربندی مختلف شبیه­سازی شده­اند. در ادامه با توجه به عوامل دینامیکی و مقایسه خروجی مدل با مقادیر دیدبانی برای هر نوع سامانه جوّی پیکربندی مناسب استخراج شده است. نتایج نشان می­دهد که نوع طرحواره همرفتی در پیش‌بینی مقدار بارش تاثیر قابل توجهی دارد و این طرحواره به شدت به عامل ایجاد ناپایداری که برخاسته از «ترازهای زِبَرین یا زیرین جوّ» باشد وابسته است. طرحواره­ همادی Grell-Freitas که همرفت روزانه را بهتر پیش­بینی می­کند برای پیش­بینی و شبیه­سازی بارش­ سنگین همرفتی­ای که عامل اصلی ایجاد ناپایداری ناشی از ترازهای زیرین جوّ و همرفت روزانه است، مناسب­تر است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the causes of different performance of WRF model in forecasting rainfall of different weather systems from a Dynamic Perspective: A case study

نویسندگان [English]

  • Sakineh Khansalari 1
  • Abbas Ranjbar-Saadatabadi, 2
1 Assistant professor, Atmospheric science and Meteorological Research Center, Tehran, Iran
2 Associate professor, Atmospheric science and Meteorological Research Center, Tehran, Iran
چکیده [English]

One of the main challenges in numerical weather prediction models is the correct rainfall forecasting, especially for springtime convective precipitation. The dynamical recognition of the "rainfall factors" leads us to select "more suitable schemes" for more accurate rainfall prediction. The WRF model has a wide range of physical parameterization schemes. The choice of each group of these schemes can change the model outputs, significantly. But sometimes, there is not enough accuracy in the prediction even using different schemes. Therefore, it is necessary to select the appropriate schemes considering the factors causing precipitation. Here, to investigate the effect of dynamical factors causing the atmospheric instability and precipitation on the appropriate physical scheme selection, two atmospheric systems for springtime precipitation with different dynamic factors have been selected. In the first case, a false forecast of a heavy rainfall leading to floods in the central regions of the Iran occurred, and in the second case, the heavy rainfall in these areas did not forecast correctly; wrong warnings of these false predictions led to management problems for the related decision makers. In this research, initially, the two systems were studied from the dynamical perspective and then, they were simulated using the WRF mesoscale model with nine different configurations. The ERA-Interim was used as the model input data for the region of interest (33°N-36°N, 48°E-54°E). The simulations were done in two nested domains with a horizontal resolution of 45 and 15 km for the first and second domain, respectively. The proper configuration was selected for each atmospheric system according to the dynamical factors and comparing the model outputs with the observations (from some stations in Tehran, Qom, Markazi, Hamedan, and the west of Isfahan provinces). The results show that the type of convection scheme has a significant impact on the prediction of rainfall amount and this scheme extremely depends on the instability factor, which initiates from "the upper and the lower atmospheric levels conditions". Based on the results, for the first case, which its main cause of precipitation is due to the potential vorticity (PV) streamer penetration to the upper level of the troposphere, the Tiedtke convective scheme and the Kessler microphysics scheme are better than the other schemes that overestimated rainfall. In the second case, the occurrence of severe rainfall with the main mechanism of daily convection was not predicted by eight configurations. But in the ninth configuration, the Grell-Freitas convection scheme could successfully predict the convective heavy precipitation due to the better capture of daytime convection over the area of study rather than other used convective schemes.

کلیدواژه‌ها [English]

  • Heavy precipitation
  • Convection
  • WRF model
  • Central area of Iran
1- Argüeso, D., J. M. Hidalgo-Muñoz, S. R. Gámiz-Fortis, M. J. Esteban-Parra, and J. Dudhia, Y. Castro-Diez, 2011, Evaluation of WRF parameterizations for climate studies over Southern Spain using a multistep regionalization. J. Clim., 24:5633–5651. 2- Chawla, I., Osuri, K. K., Mujumdar, P. P., and Niyogi, D, 2018, Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrology and Earth System Sciences, 22(2), 1095-1117. 3- Chen, S.H. and W.Y. Sun, 2002, A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan., 80(1), 99–118. doi:10.2151/jmsj.80.99 4- Dee, D. P., S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, … F. Vitart, 2011, The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597. doi:10.1002/qj.828 5- Funatsu, B. M., and D. W. Waugh, 2008, Connections between potential vorticity intrusions and convection in the eastern tropical Pacific. J. Atmos. Sci., 65, 987–1002. 6-Grell, G. A.,1993,Prognostic Evaluationof Assumptions Used by Cumulus Parameterizations. Monthly Weather Review, 121(3), 764-787. doi:10.1520.1175-0493(1993)121<0764: peoaub>2.0.co;2 7- Grell, G. A., and D. Devenyi, 2002, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14), 38-1-38-4. doi:10.2002.1029gl015311 8- Grell, G. A., and S.R. Freitas, 2014, A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14(10), 5233-5250. doi:10.5194/acp-14-5233-2014 9- Holton, J.R., 2004, An Introduction to Dynamic Meteorology. Fourth Edition. Academic Press, San Diego, California, 535pp. 10- Hong, S., and H. Pan, 1996, Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Monthly Weather Review, 124(10), 2322-2339. doi:10.1520.1175-0493(1996)124<2322: nblvdi>2.0.co;2 11- Hong, S., Y. Noh, and J. Dudhia, 2006, A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134(9), 2318-2341. doi:10.1175/mwr3199.1 12- Janjic, Z. I., 1994, The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122(5), 927-945. doi:10.1520.1175-493(1994)122<0927: tsmecm>2.0.co;2 13- Jankov, I., W. A., Jr. Gallus, M. Segal, B. Shaw, and S. E. Koch, 2005, The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Amer. Meteor. Soc., 20, 1048-1060. 14- Kain, J. S., 2004, The Kain–Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43(1), 170-181. doi:10.1520.1175-0450(2004)043<0170: tkcpau>2.0.co;2 15- Kessler, E., 1969, On the Distribution and Continuity of Water Substance in Atmospheric Circulations. On the Distribution and Continuity of Water Substance in Atmospheric Circulations, 1-84. doi:10.978.1007-1-935704-36-2_1 16- Lim, K. S., and S. Hong, 2010, Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Monthly Weather Review, 138(5), 1587-1612. doi:10.2009.1175mwr2968.1 17- Tao, W., J. Simpson, and M. McCumber, 1989, An Ice-Water Saturation Adjustment. Monthly Weather Review, 117(1), 231-235. doi:10.1520.1175-0493(1989)117<0231: aiwsa>2.0.co;2 18- Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993, Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17–56. 19- Tiedtke, M., 1989, A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Monthly Weather Review, 117(8), 1779-1800. doi:10.1520.1175-0493(1989)117<1779: acmfsf>2.0.co;2 20- Twitchett, A., 2012, Predictability and dynamics of potential vorticity streamers and connections to high impact weather. PhD Thesis. University of Leeds. 21- Wiegand, L., A. Twitchet, C. Schwierz, P. Knippertz, 2011, Heavy precipitation at the Alpine south side and Saharan dust over central Europe: A predictability study using TIGGE. Wea. and Forecasting, 26, 958-974.