نویسندگان

1 دانشجوی دکتری رشته هیدروژئولوژی، گروه زمین‌شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی

2 استاد رشته هیدروژئولوژی، گروه زمین‌شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی

3 دانشیار رشته اقلیم شناسی، مرکز مطالعات سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید بهشتی

4 استادیار رشته هیدروژئولوژی، گروه زمین‌شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی

چکیده

اثر تغییر اقلیم بر آبخوان‌های کارستی کمتر مورد توجه قرار گرفته است که علت آن دشواری مدلسازی آنها در مقایسه با آبخوان‌های آبرفتی است. با استفاده از شبکه‌های عصبی مصنوعی می‌توان بین پارامترهای اقلیمی، به عنوان جزئی از چرخه هیدرولوژی، و سطح آب زیرزمینی ارتباط برقرار کرد. در این مطالعه، پس از پیش‌بینی متغیرهای اقلیمی، یعنی بارش و دما، در دوره پایه (1961-1990) و آتی (2021-2050) با استفاده از مجموعه داده NEX-GDDP، تراز سطح آب زیرزمینی در سه چاه آهکی در گستره لالی، استان خوزستان، با استفاده از شبکه‌های عصبی مصنوعی شبیه‌سازی شده است. نتایج داده‌های آزمون بیانگر توانایی مناسب شبکه در شبیه‌سازی اثر تغییر اقلیم بر آبخوان کارستی است و پیش‌بینی می‌شود سطح آب زیرزمینی برای چاه‌های W1 و W2 بر اثر تغییر اقلیم در دوره آتی نسبت به دوره پایه کاهش یابد، درحالیکه برای چاه W3 تغییرات چندانی پیش‎بینی نمی‌شود.
 

کلیدواژه‌ها

عنوان مقاله [English]

Simulation of karst aquifer water level under climate change in Lali region, Khouzestan Province, SW Iran

نویسندگان [English]

  • Nejat Zeydalinejad 1
  • Hamid Reza Nassery 2
  • Alireza Shakiba 3
  • Farshad Alijani 4

1 1- Ph. D. Candidate of Hydrogeology, Department of Mineral Geology and Hydrogeology, Earth Sciences Faculty, Shahid Beheshti University

2 2- Professor of Hydrogeology, Department of Mineral Geology and Hydrogeology, Earth Sciences Faculty, Shahid Beheshti University

3 Associate Professor of Climatology, Remote Sensing and GIS Studies Center, Earth Sciences Faculty, Shahid Beheshti University

4 Assistant Professor of Hydrogeology, Department of Mineral Geology and Hydrogeology, Earth Sciences Faculty, Shahid Beheshti University

چکیده [English]

Climate change impacts on karst aquifers have not been mainly studied due to the difficulty of modeling these aquifers in relation to alluvial aquifers. However, it is possible to make a relationship between the climatic variables as part of the hydrologic cycle and the groundwater level using the Artificial Neural Networks (ANN). In this study firstly, precipitation and temperature data has been obtained using NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). Secondly, the groundwater level of three limestone wells, i.e. W1, W2 and W3, has been predicted using ANN in Lali region, Khouzestan Province. The correlation coefficients (R) demonstrate good ability of the groundwater model in simulating the climate change impacts on the karst aquifer. The groundwater level probably decreases for W1 and W2 during the future time period (2021-2050) in comparison with the present time period (1961-1990), while no important changes are predicted for W3. 

کلیدواژه‌ها [English]

  • Climate change
  • Karst aquifer
  • ANN
  • Lali region
1- خسروی، م.، اسمعیل‌نژاد، م. و نظری‌پور، ح.، 1389، تغییر اقلیم و تأثیر آن بر منابع آب خاورمیانه، چهارمین کنگره بین‌المللی جغرافیدانان جهان اسلام، زاهدان. 2- سازمان هواشناسی کشور، 1396، داده‌های روزانه ایستگاه هواشناسی لالی. 3- سلامی، ه.، ناصری، ح.ر. و مساح‌بوانی، ع.، 1394، پیش‌بینی احتمالاتی اثرهای تغییر اقلیم بر آبخوان آبرفتی دشت همدان-بهار، مدیریت آب و آبیاری، شماره 1، صفحات 27 تا 41. 4- سلامی، ه.، ناصری، ح.ر. و مساح‌بوانی، ع.، 1395، تاثیر عدم قطعیت خروجی مدل‌های اقلیمی در پیش‌بینی تغییرات تراز سطح آب زیرزمینی (مطالعه موردی: آبخوان دشت همدان-بهار)، پژوهش‌های دانش زمین، شماره 26، صفحات 56 تا 69. 5- کارآموز، م. و عراقی‌نژاد، ش.، 1389، هیدرولوژی پیشرفته، انتشارات دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)، تهران. 6- گلابی، م.ر.، آخوندعلی، ع.م. و رادمنش، ف.، 1392، مقایسه عملکرد الگوریتم‌های مختلف شبکه عصبی مصنوعی در مدل‌سازی بارندگی فصلی مطالعه موردی، ایستگاه‌های منتخب استان خوزستان، نشریه تحقیقات کاربردی علوم جغرافیایی سال سیزدهم، پاییز 1392، شماره 30، صفحات 151 تا 169. 7- محمدی، ح.، کفیل‌زاده، ف.، نقشینه‌فرد، م. و پیش‌بین، س.، 1387، مقایسه قدرت پیش‌بینی شبکه عصبی مصنوعی با سایر روش‌های پیش‌بینی. مجله دانش نوین کشاورزی، جلد 4، شماره 13، صفحات 85 تا 100. 8- منهاج، م.ب.، 1384، مبانی شبکه‌های عصبی، دانشگاه صنعتی امیرکبیر، تهران. 9- Aguilera, H. and Murillo, J.M., 2009, The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain, Environmental Geology, Vol. 57, pp. 963-974. 10- Anctil, F., Perrin, C. and Andreassian, V., 2004, Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models, Environmental Modeling and Software, Vol. 19 (4), pp. 357-368. 11- Bates, B.C., Kundzewicz, Z.W., Wu, S. and Palutikof, J.P., 2008, Climate Change and Water, Technical Paper of the Intergovernmental Panel on Climate, IPCC Secretariat, Geneva. 12- Butscher, C. and Huggenberger, P., 2009, Modeling the temporal variability of karst groundwater vulnerability, with implications for climate change, Environmental science and technology, Vol. 43, pp. 1665-1669. 13- Fleury, P., Plagnes, V. and Bakalowicz, M., 2007, Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse, South of France, Journal of Hydrology, Vol. 345, pp. 38-49. 14- Flint, L.E. and Flint, A.L., 2014, California Basin Characterization Model: A Dataset of Historical and Future Hydrologic Response to Climate Change, U.S. Geological Survey Data Release. doi: http://dx.doi.org/10.5066/F76T0JPB. 15- Ford, D. and Williams, P., 2007, Karst hydrogeology and geomorphology, John Wiley and Sons, England. 16- Hagan, M.T., Demuth, H.B., Beale, M.H. and Jesus, O.D., 2014, Neural Network Design. Second Edition, Neural Networks (Computer Science), Martin Hagan Publishing, USA. 17- Hartmann, A., Mudarra, M., Andreo, B., Marín, A., Wagener, T. and Lange, J., 2014, Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer, Water Resources Research, Vol. 50, pp. 6507-6521. 18- Holman, I.P., Allen, D.M., Cuthbert, M.O. and Goderniaux, P., 2012, Towards best practice for assessing the impacts of climate change on groundwater, Hydrogeology Journal, Vol. 20 (1), pp. 1-4. 19- https://nex.nasa.gov/nex/projects/1356/ 20- Hu, C., Hao, Y., Yeh, T.C.J., Pang, B. and Wu, Z., 2008, Simulation of spring flows from a karst aquifer with an artificial neural network, Hydrological Processes, Vol. 22, pp. 596-604. 21- Kohzadi, N., Boyd, M., Kaastra, I., Kermanshahi, B. and Scuse, D., 1995, Neural networks for forecasting: an introduction, Canadian Journal of Agricultural Economics, Vol. 43, pp. 463-474. 22- Kundzewicz, Z.W. and Doell, P., 2009, Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, Vol. 54 (4), pp. 665–675. 23- Kurtulus, B. and Razack, M., 2010, Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy, Journal of Hydrology, Vol. 381, pp. 101-111. 24-Lachtermacher, G. and Fuller, J.D., 1994, Backpropagation in hydrological time series forecasting. In Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Vol. 10 (3), pp. 229-242. 25-Lallahem, S., Mania, J., Hani, A. and Najjar, Y., 2005, On the use of neural networks to evaluate groundwater levels in fractured media, Journal of Hydrology, Vol. 307, pp. 92-111. 26-Lian, Y., Jiing, G., You, Y., Lin, K., Jiang, Z., Zhang, C. and Qin, X., 2014, Characteristics of climate change in southwest China karst region and their potential environmental impacts, Environmental Earth Sciences, Vol. 74 (2), pp. 937-944. 27-Maurer, E.P. and Hidalgo, H.G., 2008, Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods, Hydrology and Earth System Sciences, Vol. 12, pp. 551-563. 28-Meixner, T., Manning, A.H., Stonestrom, D.A., Allen, D.M., Ajami, H., Blasch, K.W., Brookfield, A.E., Castro, C., Clark, J.F., Gochis, D.J., Flint, A.L., Neff, K.L., Niraula, R., Rodell, M., Scanlon, B.R., Singha, K. and Walvoord, M.A., 2016, Implications of projected climate change for groundwater recharge in the western United States, Journal of Hydrology, Vol. 534, pp. 124-138. 29-Moeck, C., Brunner, P. and Hunkeler, D., 2016, The influence of model structure on groundwater recharge rates in climate-change impact studies, Hydrogeology Journal, Vol. 24 (5), pp. 1171-1184. 30-Nassery, H.R. and Salami, H., 2016, Identifying vulnerable areas of aquifer under future climate change (case study: Hamadan aquifer, West Iran), Arabian Journal of Geosciences, Vol. 9 (8), pp. 1-16. 31-Nassery, H.R., Salami, H. and Bavani, A.M., 2016, Adaptation strategies in alluvial aquifer under future climate change (Case study: Hamadan aquifer, West of Iran), 7th International Water Resources Management Conference of ICWRS, Bochum, Germany. 32-Ravbar, N. and Kovacic, G., 2016, The characteristic trends of karst discharges in relation to climate change (examples from the Classical Karst, SE Slovania), Geophysical Research Abstracts, EGU General Assembly. 33-Sadorsky, P., 2006, Modeling and forecasting petroleum futures volatility, Energy Economics, Vol. 28, pp. 467-488. 34-Sanford, W., 2002, Recharge and groundwater models: an overview, Hydrogeology Journal, Vol. 10, pp. 110-120. 35-Sethi, R.R., Kumar, A., Sharma, S.P. and Verma, H.C., 2010, Prediction of water table depth in a hard rock basin by using artificial neural network, International Journal of Water Resources and Environmental Engineering, Vol. 2 (4), pp. 95-102. 36-Sheffield, J., Goteti, G. and Wood, E.F., 2006, Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling, Climate Journal, Vol. 19 (13), pp. 3088-3111. 37-Shortridge, U.E. and Zaitchik, B.F., 2018, Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections, Climatic Change, Vol. 151 (3-4), pp. 525-539. 38-Tapoglou, E., Trichakis, I.C., Dokou, Z., Nikolos, I.K., and Karatzas, G.P., 2014, Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization, Hydrological Sciences Journal, Vol. 59 (6), pp. 1225-1239. 39-Taylor, K.E., Ronald, J.S. and Gerald, A.M., 2012, An Overview of CMIP5 and the Experiment Design, Bulletin of American Meteorology Society, Vol. 93, pp. 485-498. 40-Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., Beek, R.V., Wada, Y., Longuevergne, L., LeBlanc, M., Famiglietti, J., Edmunds, M., Konikow, L., Green, T.R., Chen, J., Taniguchi, M., Birkens, M.F.P., Macdonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D.M., Shamsudduha, M., Hiscock, K., Yeh, P.J.F., Holman, I. and Treidel, H., 2013, Ground water and climate change, Nature Climate Change, Vol. 3 (4), pp. 322-329. 41-Thrasher, B. and Nemani, R., 2015, Technical Note: NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), pp. 1-8. 42-Thrasher, B., Maurer, E.P., McKellar, C. and Duffy, P.B., 2012, Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping, Hydrology and Earth System Sciences, Vol. 16 (9), pp. 3309-3314. 43-Trichakis, I.C., Nikolos, I.K. and Karatzas, G., 2011, Artificial neural network (ANN) based modeling for karstic groundwater level simulation, Water Resources Management, Vol. 25 (4), pp. 1143-1152. 44-Walsh, J.E., Bhatt, U.S., Littell, J.S., Leonawicz, M., Lindgren, M., Kurkowski, T.A., Bieniek, P.A., Thoman, R., Gray, S. and Rupp, T.S., 2018, Downscaling of climate model output for Alaskan stakeholders, Environmental Modelling and Software, Vol. 110, pp. 38-51. 45-Yan, T., Bai, J., Toloza, A., Liu, J. and Shen, Z., 2018, Future climate change impacts on streamflow and nitrogen exports based on CMIP5 projection in the Miyun Reservoir Basin, China, Ecohydrology and Hydrobiology, Vol. 205, pp. 1-13. 46-Yu, R., Zhai, P. and Chen, Y., 2018, Facing climate change-related extreme events in megacities of China in the context of 1.5 C global warming, Current Opinion in Environmental Sustainability, Vol. 30, pp. 75-81. 47-Zhang, Y., You, Q., Mao, G., Chen, C. and Ye, Z., 2018, Short-term concurrent drought and heatwave frequency with 1.5 and 2.0 °C global warming in humid subtropical basins: a case study in the Gan River Basin, China, Climate Dynamics, Vol. 52 (7-8), pp. 4621-4641.