نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشکدگان فنی-دانشگاه تهران

2 دانشیار ، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشکدگان فنی-دانشگاه تهران

10.30467/nivar.2021.146142

چکیده

خط ساحلی به عنوان مرز بین آب و خشکی تلقی می­شود. سواحل از مهم­ترین عوارض زیست محیطی بوده که بر زندگی انسان­ها به طور مستقیم اثر گذار است. بالا رفتن سطح دریاها به سبب گرمایش زمین باعث شده است شهرهای ساحلی از جمله مناطقی ­باشند که  تهدید می­شوند. بنابراین مدیریت و برنامه­ریزی جهت جلوگیری از فرسایش سواحل از موارد مهمی است که باید به آن توجه کرد. در این تحقیق به بررسی تغییرات سواحل با استفاده از تصاویر ماهواره سنتینل-1 در استان مازندران،  ساحل بین شهرهای چالوس تا تنکابن پرداخته­ایم. بدین منظور از دو تصویر در تاریخ 15/01/2019 و 01/09/2021 استفاده شده و تصاویر موردنظر از سامانه گوگل ارث­انجین  اخذ شده است. در مرحله پیش­پردازش تصاویر به تصحیح خطای ارتفاعی منطقه  موردمطالعه و تعدیل نویز اسپکل پرداختیم. سپس لبه ساحل به کمک  حد آستانه اوتسو درتصاویرکشف شد.  درنهایت جهت محاسبه میزان رسوب­گذاری وفرسایش ساحل با تکنیک  EPRاز سامانه تحلیل رقومی خط ساحلی (DSAS) استفاده شد.  در 87 درصد ساحل این منطقه شاهد فرسایش ساحل بوده­ایم. مقدار فرسایش بطور میانگین حدود 7 متر درسال است.

کلیدواژه‌ها

عنوان مقاله [English]

Monitoring of changes from Chalous to Tonekabon Coastline Using Sentinel-1 Satellite Images

نویسندگان [English]

  • ehsan rostami saqez 1
  • MohammadAli Sharifi 2
  • Mahdi Hasanlou 2

1 M.Sc Student, School of Surveying and Geospatial Engineering, University of Tehran

2 Associate Professor, School of Surveying and Geospatial Engineering, University of Tehran

چکیده [English]

The coastline is considered as the boundary between water and land. coasts are one of the most important environmental effects that directly affect human life. Rising sea levels due to global warming have made coastal cities among the areas under threat. Therefore, management and planning to prevent coastal erosion is one of the important issues that should be considered. In this research, we have studied the changes of shoreline using sentinel-1 satellite images in mazandaran province, the coast between the cities of chalous and tonekabon. For this purpose, two images on 15/01/2019 and 01/09/2021 have been used and the desired images have been taken from the google earth engine system. In the pre-processing step of the images, we corrected the height error of the study area and adjusted the speckle noise. The edge of the shore was discovered with the otsu threshold in the images. Finally, Digital Shoreline analysis system (DSAS) was used to calculate the amount of sedimentation and erosion of the coast by EPR technique. In 87% of the coast of this transects, we have witnessed coastal erosion. The average amount of erosion is about 7 meters per year.

کلیدواژه‌ها [English]

  • Coastline
  • Google Earth Engine
  • Sentinel-1
  • Otsu Threshold
  • Digital Shoreline Analysis System
  • Speckle Noise
  1. همایون, خ., et al., ناحیه بندی سواحل جنوبی دریای خزر براساس شواهد مورفودینامیک رسوبی. فیزیک زمین و فضا, 1390. سال سی و هفتم(3): p. 1-.
  2. سلحشوری, ف. and س. المدرسی, بررسی تغییرات خط ساحلی با استفاده از تصاویر رادار ( محدوده مطالعاتی : جزیره قشم), in دومین همایش ملی کاربرد مدل های پیشرفته تحلیل فضایی(سنجش از دور و GIS) در آمایش سرزمین. 1395, undefined.
  3. Church, J.A. and N.J. White, Sea-level rise from the late 19th to the early 21st century. Surveys in geophysics, 2011. 32(4): p. 585-602.
  4. Church, J.A., et al., Sea level change. 2013, PM Cambridge University Press.
  5. Day Jr, J.W., et al., Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. science, 2007. 315(5819): p. 1679-1684.
  6. Arkema, K.K., et al., Coastal habitats shield people and property from sea-level rise and storms. Nature climate change, 2013. 3(10): p. 913-918.
  7. Shepard, C.C., et al., Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York. Natural hazards, 2012. 60(2): p. 727-745.
  8. Mitra, A., Sensitivity of mangrove ecosystem to changing climate. Vol. 62. 2013: Springer.
  9. Hagenaars, G., et al., Long term coastline monitoring derived from satellite imagery. Proc. Coastal Dynamics (12–16 June 2017), 2017: p. 1551-62.
  10. Rasuly, A., R. Naghdifar, and M. Rasoli, Monitoring of Caspian Sea coastline changes using object-oriented techniques. Procedia Environmental Sciences, 2010. 2: p. 416-426.
  11. Kuleli, T., et al., Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 2011. 38(10): p. 1141-1149.
  12. Lee, J.-S. and E. Pottier, Polarimetric radar imaging: from basics to applications. 2017: CRC press.
  13. Henderson, F.M. and A.J. Lewis, Principles and applications of imaging radar. Manual of remote sensing: Volume 2. 1998.
  14. Yen, N.H. and T.L.T. Kim, Coastline changes detection from Sentinel–1 satellite imagery using spatial fuzzy clustering and interactive thresholding method in Phan Thiet, Binh Thuan.
  15. Modava, M. and G. Akbarizadeh. A level set based method for coastline detection of SAR images. in 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA). 2017. IEEE.
  16. Bioresita, F. and N. Hayati, Coastline changes detection using sentinel-1 satellite imagery in surabaya, east java, Indonesia. Geoid, 2016. 11(2): p. 190-198.
  17. Acar, U., et al., An algorithm for coastline detection using SAR images. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012. 39: p. 457-460.
  18. Ao, D., et al. Coastline detection with time series of SAR images. in Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2017. 2017. International Society for Optics and Photonics.
  19. O'Loughlin, F.E., et al., A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sensing of Environment, 2016. 182: p. 49-59.
  20. Racine, R., et al., Speckle noise and the detection of faint companions. Publications of the Astronomical Society of the Pacific, 1999. 111(759): p. 587.
  21. Yommy, A.S., R. Liu, and S. Wu. SAR image despeckling using refined Lee filter. in 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics. 2015. IEEE.
  22. Otsu, N., A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 1979. 9(1): p. 62-66.
  23. Qiao, G., et al., 55-year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai. International journal of applied earth observation and geoinformation, 2018. 68: p. 238-251.
  24. Wang, X., et al., Spatio-temporal change detection of Ningbo coastline using Landsat time-series images during 1976–2015. ISPRS International Journal of Geo-Information, 2017. 6(3): p. 68.