تحلیل تغییرات پوشش گیاهی و فراوانی رخدادهای گردوخاک در منطقه غرب آسیا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

2 دانشیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

3 دانش‌آموخته دکتری هواشناسی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

10.30467/nivar.2023.395654.1245

چکیده

در این مطالعه با هدف تعیین الگوی پدیده گردوخاک در غرب آسیا و ارتباط آن با پوشش‌گیاهی، میانگین AOD و نیز شاخص‌های SAVI، VCI و TCI در بازه زمانی 10 ساله (2009 تا 2018) ارزیابی شده است. مهم‌ترین نتایج حاکی از آن است که در بخش وسیعی از منطقه مقدار AOD قابل‌توجه است. محاسبه ضریب همبستگی بین AOD و NDVI در 4 منطقه که دارای بیشترین مقادیر AOD هستند نشان داد که تقریبا در تمامی مناطق و در تمامی فصول مقادیر ضریب همبستگی منفی و معنی دار است. بنابراین می‌توان نتیجه گرفت که در این مناطق با کاهش پوشش گیاهی مقدار AOD افزایش یافته است. همچنین بیشترین مقدار این همبستگی در مرز عراق و کویت و در فصل تابستان برابر 73/0- بدست آمد. علاوه بر این بیشترین تغییرات فصلی SAVI در غرب ایران و کشور عراق با مقادیر بین 4/0 – 05/0 مشاهده شده است؛ به گونه‌ای که شاخص SAVI در این مناطق در فصل بهار به شکل قابل توجهی بیشتر از سایر فصل‌ها است. کمترین مقادیر VCI نیز در منطقه مورد بررسی در عراق، سوریه و عربستان با مقادیر کمتر از 6 مشاهده ‌شده است. بیشترین مقادیر شاخص TCI مربوط به مناطقی در شمال‌شرقی عربستان و در فصل تابستان است. در ایران در نواحی شرقی مقدار این شاخص بین 70-60 است که می‌تواند نشان دهنده افزایش دما در این مناطق نسبت به مقادیر بلندمدت باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Vegetation Cover Variation and Dust Frequency analysis over West of Asia

نویسندگان [English]

  • Mehdi Rahnama 1
  • Saviz Sehat 1
  • Sara Karami 1
  • Abbas Ranjbar 2
  • Noushin Khoddam 3
1 Assistant Professor, Research Institute of Meteorology and Atmospheric Science, Tehran, Iran
2 Associate professor, Research Institute of Meteorology and Atmospheric Science, Tehran, Iran
3 Ph. D, Research Institute of Meteorology and Atmospheric Science, Tehran, Iran
چکیده [English]

Dust is one of the major environmental problems that make health and financial losses in arid and semi-arid regions. As a country located in the Middle East, Iran has been affected by these natural hazards and every year dust storms occur in different parts of Iran causing huge amounts of damage. Dust storms have increased due to recent droughts and internal Sand and Dust Storm (SDS) hotspots in the Middle East. Interactions between the atmosphere and the earth's surface, such as the effect of vegetation or soil moisture and rainfall intensity in an area, can be important in determining the convective activity of the atmosphere (Lee et al., 2016). Since dust emission and wind speed depend on factors such as soil type, soil moisture, and vegetation (Prospero et al., 2002), it is important to study the relationship between the amount and type of vegetation and drought with dust events. Gradually, as the warm season approaches, the pattern of dust formation is intensified by north, and northwest winds and the wind field channeling due to convergent topography, especially over Mesopotamia. . The lowest values of the VCI in the studied region are observed in the countries of Iraq, Syria, and Saudi Arabia; while the seasonal changes of VCI over Iran are not significant. Nevertheless, in the southeast of Iran, the highest values are related to the summer season, which can be due to the rainfall caused by the activity of the Indian monsoon in this region.

کلیدواژه‌ها [English]

  • AOD
  • Dust
  • SAVI
  • VCI
  • Vegetation cover
1.    پورهاشمی، س.؛ م. بروغنی، م.ع. زنگنه اسدی، ا. امیراحمدی. 1394. تحلیل ارتباط پوشش گیاهی بر وقوع تعداد گردوغبار استان خراسان رضوی با اسـتفاده از سیستم اطلاعات جغرافیایی و سنجش‌ازدور. سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 6(4): 45-33.
2.    حمزه، س.؛ ز. فراهانی، ش. مهدوی، ا. چترآبگون، م. غلام‌نیا. 1396. پایش زمانی و مکانی خشکسالی کشاورزی با استفاده  از داده‌های سنجش از دور، مورد مطالعه: استان مرکزی ایران. تحلیل فضایی مخاطرات محیطی، سال چهارم، 3.
3.    خدام، ن.؛ س. تاج‌بخش، ع.ع. بیدختی، س. صحت کاشانی، ع. رنجبر سعادت‌آبادی. 1399. مطالعه گردش‌های بزرگ‌مقیاس تابستانی و ساختار لایه‌مرزی جوی در روزهای همراه با گردوخاک در جنوب شرق ایران (1987-2016). نشریه فیزیک زمین و فضا،  46 (2): 312-295.
4.    خوش‌سیما، م.؛ ع.ع. علی‌اکبری بیدختی، ف. احمدی گیوی. 1391. تعیین عمق نوری هواویزها با استفاده از داده‌های دید افقی و سنجش‌ازدور در دو منطقه شهری در ایران. مجله فیزیک زمین و فضا، 39(1): 174-163.
5.    کرمی، س.، ن. خدام، س. صحت کاشانی، م. رهنما. 1399. بررسی رخدادهای گردوخاک جنوب ایران ناشی از کشورهای حاشیه خلیج‌فارس. هواشناسی و علوم جو، 3(2): 128-113.
6.    Abuduwaili J,; M. Gabchenko, X. Junrong. 2008. Eolian transport of salts-a case study in the area of Lake Ebinur (Xinjiang, Northwest China). Journal of Arid Environments, 72(10): 1843-1852.
7.    Adamo N.; N. Al-Ansari, VK. Sissakian, S. Knutsson, J. Laue. 2018. Climate Change: Consequences on Iraq’s Environment. Journal of Earth Sciences and Geotechnical Engineering, 8 (3): 43–58.
8.    Ashrafi K.; MS. Motlagh, SE. Neyestani. 2017. Dust storms modeling and their impacts on air quality and radiation budget over Iran using WRF-Chem. Air Quality, Atmosphere & Health, 10(9): 1059– 1076. 10.1007/s11869-017-0494-8.
9.    Bristow, C.S.; K.A. Hudson-Edwards, and A. Chappell. 2010. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophysical Research Letters, 37(14).
10.    Bryant RG.; GR. Bigg, NM. Mahowald, FD. Eckardt, SG. Ross. 2007. Dust emission response to climate in southern Africa. Journal of Geophysical Research: Atmospheres (1984–2012), 112(D9): 1- 17.
11.    Du, H.; S. Dou, X. Deng, X. Xue, T. Wang, 2016. Assessment of wind and water erosion risk in the watershed of the Ningxia-Inner 
Mongolia Reach of the Yellow River. China. Ecological Indicators, 67: 117–131.
12.    Evans, S.; S. Malyshev, P. Ginoux, E. Shevliakova. 2019. The impacts of the dust radiative effect on vegetation growth in the Sahel. Global Biogeochemical Cycles, 33: 1582-1593.
13.    Fenta, A.A.; A. Tsunekawa, N. Haregeweyn, J. Poesen, M. Tsubo, P. Borrelli, P. Panagos, M. Vanmaercke, J. Broeckx, H. Yasuda, T. Kawai, Y. Kurosaki. 2020. Land susceptibility to water and wind erosion risks in the East Africa region. Science of the Total Environment, 703, 135016.
14.    Gillette, DA.; J. Adams, A. Endo, D. Smith, R. Kihl. 1980. Threshold velocities for input of soil particles into the air by desert soils. Journal of Geophysical Research: Oceans, (1978–2012), 85(C10): 5621- 5630.
15.    Hsu, N.C.; S.-C. Tsay, M.D. King, J.R. Herman. 2004. Aerosol properties over bright reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42.
16.    Ji, L.; A. Peters. 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87: 85–89.
17.    Jiao, W.; L. Zhang, Q. Chang, D. Fu, Y. Cen, Q. Tong. 2016. Evaluating an Enhanced Vegetation Condition Index (VCI) Based on VIUPD for Drought Monitoring in the Continental United States. Remote Sens., 8: 224; doi:10.3390/rs8030224.
18.    Jickells, T.D.; Z.S. An, K.K. Andersen, A.R. Baker, G. Bergametti, N. Brooks, J.J. Cao, P.W. Boyd, R.A. Duce, K.A. Hunter, and H. Kawahata. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718): 67-71.
19.    Kogan, F.N. 1995a. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite date. Bull. Amer. Meteor. Soc., 76(5): 655-668.
20.    Kogan, F.N. 1997. Global drought watch from space. Bull. Amer. Meteor. Soc., 78(4): 621-636.
21.    Kurosaki, Y.; M. Mikami. 2005. Regional difference in the characteristic of dust event in East Asia: relationship among dust outbreak, surface wind, and land surface condition. Journal of the Meteorological Society of Japan, 83(1): 1-18. 

22.    Laifenfeld, M.; T.J. Talty, and D.M. Kidd. 2016. Low line TPMS: sensor association using RSSI and Doppler signatures with a single or multiple ECUs. U.S. Patent, 9,278.
23.    Lee E-H.; B-J. Sohn. 2011. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change. Atmospheric Environment, 45(27): 4611-4616.
24.    Legrand M.; A. Plana-Fattori, C. N’Doumé. 2001. Satellite detection of dust using the IR Imagery of Meteosat 1. Infrared difference dust index. J Geophys Res, 106(D16):18251–18274.
25.    Levy, R.C.; L.A. Remer, R.G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, T.F. Eck. 2010. Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys,. 10: 10399–10420.
26.    Li, J.; E. Garshick, A. Al-Hemoud, S. Huang, and P. Koutrakis, 2020. Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Science of the total environment, 712: p.136597.
27.    Li, M.; Z. Su, X. Chen, D. Zhang, F. Sun, Y. Ma, and Z. Hu. 2016. The effect of the Asian monsoon to the atmospheric boundary layer over the Tibetan plateau. EGU. Martin, J. H., 1990: Glacial‐interglacial CO2 change: The iron hypothesis. Paleo oceanography, 5: 1-13.
28.    Mahowald NM.; RG. Bryant, J. del Corral, L. Steinberger. 2003. Ephemeral lakes and desert dust sources. Geophysical Research Letters, 30(2): 1074-1083.
29.    Marshall, J.K. 1971. Drag measurements in roughness arrays of varying density and distribution. Agricultural Meteorology, 8: 269-292.
30.    Martin, J. H. 1990. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5(1): 1, 13.
31.    Martínez-García, A.; A. Rosell-Melé, S.L. Jaccard, W. Geibert, D.M. Sigman, G. H. Haug. 2011. Accumulation rates of ODP Site 177-1090. PANGAEA, doi.org/10.1594/PANGAEA.767460.
32.    McTainsh, G.H.; A.W. Lynch and R.C. Burgess. 1990. Wind erosion in eastern Australia. Soil Research, 28(2): 323-339.

33.    Miri, A.; H. A. Ahmadi, A. Ghanbari, R. Moghaddamnia. 2007. Dust Storms Impacts on Air Pollution and Public Health under Hot and Dry Climate.  International Journal of energy and environmental engineering, 1 (2): 101- 105.
34.    Morelli, X.; C. Rieux, J. Cyrys, B. Forsberg, R. Slama, 2016. Air pollution, health and social deprivation: A fine-scale risk assessment. Environmental research, 147: 59-70.
35.    Namdari S.; N. Karimi, A. Sorooshian, G.H. Mohammadi, S. Sehatkashani. 2018. Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos. Environ, 173: 265–276. 10.1016/.2017.11.016.
36.    Namdari, S.; A.I. Zghair Alnasrawi, O. Ghorbanzadeh, A. Sorooshian, K.V. Kamran, and P. Ghamisi. 2022. Time series of remote sensing data for interaction analysis of the vegetation coverage and dust activity in the middle east. Remote Sensing, 14(13): p.2963.
37.    Neophytou AM.; P. Yiallouros, BA. Coull, S. Kleanthous, P. Pavlou, S. Pashiardis, DW. Dockery, P. Koutrakis, F. Laden. 2013. Particulate matter concentrations during desert dust outbreaks and daily mortality in Nicosia, Cyprus. J Expo Sci Environ Epidemiol, 23 (3): 275–280. 10.1038/ jes.2013.10.
38.    Okin, G. S.; N. Mahowald, O. A. Chadwick, and P. Artaxo. 2004. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems, Global Biogeochem. Cycles, 18: GB2005, doi:10.1029/2003GB002145.
39.    Parolari, A.J.; D. Li, E. Bou-Zeid, G.G. Katul, and S. Assouline, 2016. Climate, not conflict, explains extreme Middle East dust storm. Environmental Research Letters, 11(11): p.114013.
40.    Pritchard, H.; J. Gabrys, and L. Houston. 2018. Re-calibrating DIY: Testing digital participation across dust sensors, fry pans and environmental pollution. new media & society, 20(12): 4533-4552.
41.    Prospero JM.; P. Ginoux, O. Torres, SE. Nicholson, TE. Gill. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40(1): 2-1-2-31.
42.    Quiring, S.M.; S. Ganesh. 2010. Evaluating the utility of the Vegetation Condition Index 
(VCI) for monitoring meteorological drought in Texas. Agricultural and Forest Meteorology, 150: 330–339.
43.    Raspanti, G.A.; M. Hashibe, B. Siwakoti, M. Wei, B.K. Thakur, C.B. Pun, M. Al-Temimi, Y.C. Lee, A. Sapkota, 2016. Household air pollution and lung cancer risk among never-smokers in Nepal. Environ. Res., 147: 141-145.
44.     Reynolds RL.; JC. Yount, M. Reheis, H. Goldstein, P. Chavez, R. Fulton, J. Whitney, C. Fuller, RM. Forester. 2007. Dust emission from wet and dry playas in the Mojave Desert, USA. Earth Surface Processes and Landforms, 32(12): 1811-1827.
45.    Sartori, M., G. Philippidis, E. Ferrari, P. Borrelli, E. Lugato, L. Montanarella, P. Panagos. 2019. A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy, 86: 299–312.
46.    Schroedter-Homscheidt M.; A. Oumbe, A. Benedetti, J-J. Morcrette. 2013. Aerosols for concentrating solar electricity production forecasts: requirement quantification and ECMWF/MACC aerosol forecast assessment. Bull Am Meteorol Soc, 94:903–914.
47.    Shahabinejad, N.; M. Mahmoodabadi, A. Jalalian, E. Chavoshi. 2019. The fractionation of soil aggregates associated with primary particles influencing wind erosion rates in arid to semiarid environments. Geoderma, 356, 113936.
48.    Shahsavani A.; A. Tobías, X. Querol, M. Stafoggia, M. Abdolshahnejad, F. Mayvaneh, Y. Guo, M. Hadei, S. Saeed Hashemi, A. Khosravi, Z. Namvar, M. Yarahmadi, B. Emam. 2020. Short-term effects of particulate matter duri
49.    Shi, Y.; J. Zhang, J.S. Reid, E.J. Hyer, N.C. Hsu. 2013. Critical evaluation of the MODIS deep Blue aerosol optical depth product for data assimilation over North Africa. Atmos. Meas. Tech., 6: 949–969. http://dx.doi.org/10.5194/amt-6-949-2013.
50.    Soltani, N.; B. Keshavarzi, A. Sorooshian, F. Moore, C. Dunster, A.O. Dominguez, F.J. Kelly, P. Dhakal, M.R. Ahmadi, S. Asadi. 2017. Oxidative potential (OP) and mineralogy of iron  ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ. Geochem. Health, doi:10.1007/s10653-017-9926-5.
51.    Specht, R.L.; & A. Specht. 1999. Australian plant communities: dynamics of structure, growth and biodiversity. Oxford University Press, Melbourne, 492.
52.    Stisen, S.; I. Sandholt, A. Nørgaard, R. Fensholt, and K.H. Jensen. 2008. Combining the triangle method with thermal inertia to estimate regional evapotranspiration, Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sensing of Environment, 112: 1242-1255.
53.    Torres, O.; C. Ahn and Z. Chen. 2013. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmospheric Measurement Techniques, 6(11): 3257-3270.
54.    Trianti SM; E. Samoli, S. Rodopoulou, K. Katsouyanni, SA. Papiris, A. Karakatsani. 2017. Desert dust outbreaks and respiratory morbidity in Athens, Greece. Environ. Health, 16 (1).
55.     Troin M.; C. Vallet-Coulomb, F. Sylvestre, E. Piovano. 2010. Hydrological modeling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th-century climatic changes. Journal of Hydrology, 393(3): 233-244.
56.    Wang, J.; S.A. Christopher. 2003. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophysical research letters, 30: issue 21.
57.    Washington R.; MC. Todd, S. Engelstaedter, S. Mbainayel, F. Mitchell. 2006. Dust and the low‌ level circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005. Journal of Geophysical Research: Atmospheres (1984–2012), 111(D3): 1-18.
58.    Yang, Z.; L. Di, G. Yu and Z. Chen. 2011. Vegetation condition indices for crop vegetation condition monitoring. IEEE International Geoscience and Remote Sensing Symposium: 3534-3537.
59.    Yassin MF.; SK. Almutairi, A. Al-Hemoud; 2018. Dust storms backward Trajectories' and source identification over Kuwait. Atmos. Res, 212: 158–171. https://doi.org/100.1016/ j. atmosres.2018.05.020.