تغییرات ترمودینامیک جو هنگام بروز رخداد تگرگ مطالعه موردی: تگرگ 28جولای 2009 مشهد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار اقلیم شناسی، دانشکده جغرافیا، دانشگاه خوارزمی تهران

2 دانشیار اقلیم شناسی دانشگاه خوارزمی

3 دکترای اقلیم شناسی دانشگاه حکیم سبزواری

10.30467/nivar.2019.81726.1055

چکیده

‌هدف از این پژوهش بررسی تحولاتی است که در نیوار باعث ایجاد پدیده مخاطره‌آمیز تگرگ می‌شود. این تحولات شامل تحولات دینامیکی و حرارتی است. در پیش‌بینی‌های اقلیمی، شاخص‌های متفاوتی برای ارزیابی پایداری و ناپایداری‌ اتمسفر که عامل ایجاد تگرگ است بکار گرفته می‌شود. شاخص‌های مورد مطالعه در این پژوهش عبارتند از: SHOW ،Thomson، K، BI، RI، JEFF، Boyden، DCI، KO، SOI. دوره مورد مطالعه سال‌های 1980 تا 2010 می‌باشد. دراین پژوهش مشخص شد هنگامی که تگرگ در مشهد رخ می‌دهد؛ شاخص‌های ناپایداری، بویژه در بعدازظهرها، تشدید شده است. و نتایج بدست آمده از کل شاخص‌ها وقوع ناپایداری شدید جوی در حد طوفان تندری در مشهد را مورد تأیید قرار می‌دهد. بررسی نمودارهای نحوه تغییرات پارامترهای هواشناسی در روزهای وقوع تگرگ و روز قبل از آن، نشان دهنده کاهش دما، فشارهوا و افزایش رطوبت نسبی و دمای نقطه شبنم است. بیشترین فراوانی وقوع تگرگ طی ساعات 9 تا 13 UTC)) در منطقه مورد مطالعه رخ داده است. همچنین بیشترین فراوانی این پدیده در ماه‌های مارس تا می مشاهده شده است. بررسی الگوهای سینوپتیکی نشان داد که در تراز 500 هکتوپاسکال ریزش تگرگ در مشهد در اثر تشکیل و تقویت زبانه کم ارتفاع، واگرایی سطوح میانی ورد سپهر و ناپایداری ناشی از ریزش هوای سرد می‌باشد. در تراز دریا، تقویت کم‌فشار و نفوذ هوای گرم به منطقه بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Thermodynamic Changes of atmosphere during Thunderstorms

نویسندگان [English]

  • Mohammad Salighe 1
  • Mehri Akbari 2
  • Fahimeh Shakeri 3
1 Associate Professor of Climatology, Faculty of Geography, Kharazmi University of Tehran
2 Associate professor of Climatology
3 phD. of urban Climatology
چکیده [English]

The present study aims to investigate the changes in atmospheric conditions causing a hazardous climatic phenomenon known as hailstorm. These changes are classified and related to thermal and dynamic changes. In order to study the dynamics and synoptic of hail phenomenon in Mashhad, daily hail rainfall data were used during the 1980-2010 period. Then, one heavy rainfall specimen was identified and selected during the statistical period. The results of the hail analysis indicate that the highest frequency of hail occurrences were from 9 to 13 (UTC) in Mashhad city. Moreover, the highest frequency was from March to May months. In atmospheric predictions, there are different indicators for assessing the instability of atmosphere which lead to hail occurrence. The parameters and indicators under investigation in this study for 28 July 2009 include SHOW, TT, K, BI, RI, JEFF, Boyden, DCI, KO and SOI. According to the results of this research, when hail occurred in Mashhad, instability indices increased meaningfully, In addition, all instability indicators showed severe instable conditions (thunderstorm) during hailstone occurrence. Analyzing the weather charts indicated the changes of climatic parameters on the days of hailstorm and the days before them. Charts showed that the temperature and air pressure decreased while the relative humidity and dew point temperature increased on the days of hail in comparison with the earlier day.

کلیدواژه‌ها [English]

  • Thunderstorm
  • Hail
  • weather hazards
  • instability indices
منابع
1-     امیدوار،ک.، صفرپور، ف.، زنگنه اینالو، ا. 1390. بررسی و تحلیل همدیدی سه رخداد تگرگ شدید در استان اصفهان، مجله جغرافیا و توسعه، شماره 30، ص 157-178.
 
2-     ثنایی نژاد، ح.، صالحی، ح.، بابائیان، ا. 1389. تحلیل سینوپتیکی و دینامیکی پدیده های همرفتی محلی به منظور بهبود پیش­بینی آنها، مجموعه مقالات چهاردهمین کنفرانس ژئوفیزیک ایران، 21 تا 23 اردیبهشت، تهران.
3-     رحیمی، د.، میرهاشمی، ح.، عابدی، ف. 1391. تحلیل ترمودینامیک و سینوپتیکی سیلاب­های لحظه ای مناطق خشک (حوضه زاینده رود)، مجله علوم و مهندسی آبیاری، شماره 3، ص 59- 68.
 
4-     زاهدی، م.، چوبدار، ا. 1386. مقایسه شاخص­های ناپایداری جوی حوضه آبریز آجی چای با استانداردهای ناپایداری جوی و تعیین الگو برای حوضه، جغرافیا و توسعه ناحیه‌ای، شماره 9، ص 23-44.
 
5-     سیف، م. 1375. بررسی توزیع بارش تگرگ در ایران و مطالعه موردی آن (پایان نامه کارشناسی ارشد)، موسسه ژئوفیزیک، دانشگاه تهران.
 
6-     شایسته، ف. 1391. تحلیل سینوپتیک تگرگ در استان کرمانشاه، پایان نامه کارشناسی ارشد، دانشگاه خوارزمی، تهران.
 
7-     صادقی حسینی، ع.، رضائیان، م. 1385. بررسی تعدادی از شاخص های ناپایداری و پتانسیل بارور سازی  ابرهای همرفتی منطقه اصفهان، مجله فیزیک زمین و فضا، جلد 32 ، شماره 2، ص 83-98.
 
8-     فرج زاده، م.، مصطفی پور، ط.1391. تحلیل زمانی و مکانی بارش تگرگ در ایران، جغرافیا و توسعه، شماره 28، ص 55-66.
 
9-     فلاح قالهری، غ. 1395. هواشناسی فیزیکی. انتشارات دانشگاه حکیم سبزواری، سبزوار.ص 272.
 
10- فلاح قالهری، غ. 1393، اصول و مبانی هواشناسی، انتشارات دانشگاه حکیم سبزواری، سبزوار. ص 590.
 
11- کاکولی، ا. 1392. تحلیل سینوپتیکی و آماری تگرگ در شهرستان ارومیه،پایان نامه کارشناسی ارشد، دانشگاه خوارزمی، تهران.
12-   4- Andersson, T., Andersson, M., Jacobsson, C., Nilsson, S. 1989. Thermodynamic Indices for Forecasting Thunderstorms in Southern Sweden. Meteorological Magazine.116, 141-146.
 
13-   Anthes, R. A. 1976. Numerical prediction of severe storms – Certainty, possibility, or dream? Bull. Am. Meteorol. Soc., 57, 423– 435.
14-   Barlow, W.R. 1993A .New Index for the Prediction of Deep Convection, Preprints, 17th Conference on Sever Local Storms, St. Louis, Amer. Meteoral. Soc, pp. 129-132.
 
15-   Boyden, C.J.1963. Simple instability index for use as a synoptic parameter, Meteorological Magazine, 92,198-210.
 
16-   Bradbury, T.A.M. 1977.The use of wet-bulb potential temperature charts. Meteorological ‌ Magazine, 106, 233-251.
 
17-   ‌Changnon, S. A. 2001a. Damaging thunderstorm activity in the United States. Bull. Amer. Meteor. Soc., 82, 597–608.
 
18-   Colquhoun, J. R. 1998. A decision tree method of forecasting thunderstorms, severe thunderstorms and tornadoes revisited, Proc. Fifth Australian Severe Thunderstorm Conf., Avoca Beach, New SouthWales, Australia, Australian Bureau of Meteorology, 135– 141.
 
19-   Dalezios, N. R. & Papamanolis, N. K. 1991.Objective assessment of instability indices for operational hail forecasting in Greece, Meteorol. Atmos. Phys., 45, 87–100.
 
20-   Davis. N. E. 2012. Diurnal variation of thunder at Heathrow airport, London, Weather. 24: 66-72.
 
21-   Doswell, C. A. III, 2007. Historical overview of severe convective storms research. Electronic J. Severe Storms Meteorology., 2 (1), 1-25 Forecasting 12, 108-125.
 
22-   George, J. J. 1960.Weather forecasting for Aeronautics, Academic Press, New York, 673 pp.
 
23-   Gottlieb, R. J. 2009. Analysis of Stability Indices for Severe Thunderstorms in the Northeastern United States. M.Sc. Thesis, Cornell University, Ithaca, USA, 26, 137-146.
 
24-   Haklander, A. J. &.  Van Delden, A. 2003.Thunderstorm predictors and their forecast skill for the Netherlands, Atmos. Res., 67–68, 273– 299.
 
25-   Huntrieser, H., Schiesser, H. H., Schmid, W, and Waldvogel, A. 1997. Comparison of Jefferson, G.J. 1966. Letter to the editor. Meteorological Magazine.95,381-382.
 
26-   Jürgen, G. 2012. Convection Parameters. June 26, Pp.6.
27-   Knutsvig, R., Forks, G. 2000. Severe Weather Indices, University of North Dakota. Acessed May 2000. pp251.
 
28-   Krishna Rao, P. R. 1966.Thunderstorm studies in India – A review. Indian J. Meteorol. Geophys.,12, 3.
 
29-   Litta, A. J. & Mohanty, U. C.  Simulation of a severe thunderstorm event during the field experiment of STORM program 2006, using WRF–NMM model, ‌ CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008.
 
30-   Marinaki, A., Spiliotopoulos, M., Michalopoulou, H. 2006. Evaluation of atmospheric instability indices in Greece, ‌Advances in Geosciences, 7, 131–135.
 
31-   Miller, R. C. 1967. Note on analysis and severe storm forecasting procedures of the Military Weather Warning Center, AWS Tech. Rep. 200, USAF, Scott AFB, IL, pp 94.
 
32-   Munich Reinsurance America, Inc. 2006. Topics annual review of North American natural catastrophes in 2006. Munchener Ruckversicherungs-Gesellschaft, pp 60.
 
33-   Neumann, C. J. 1971.The thunderstorm forecasting system at the Kennedy Space Center. J. Appl. Meteorol., 10, 921–936.
 
34-   Prezerakos, N. G. 1989. An investigation into the conditions in which air mass thunderstorms occur at Athens, Meteorological Magazine, 118 , 31–36.
 
35-   Rackliff, P.G. 1962. Applications of an Instability Index to regional forecasting. Meteorological Magazine,91,113-120.
 
36-   Rao, K. N., Daniel, C. E. J. and Balasubramanian, L. V. 1971.Thunderstorms over India. IMD Pre-published Scientific Report No. 153.
 
37-   Schultz, P. 1989. Relationships of several stability indices to convective weather events in northeast Colorado. Weather Forecast. 4, 73–80.
 
38-   Showalter, A. K.1953. A stability index for thunderstorm forecasting, bull. Amer. Meteor. Soc., 34, 240–252.
 
39-   Sioutas, M. V. & Flocas, H. A. 2003. Hailstorms in Northern Greece: synoptic patterns and thermodynamic environment, Theor. Appl. Climatol., 75, 189–202.
 
40-   Traditional and Newly Developed Thunderstorm Indices for Switzerland. Weather. http://www. Geocities. Com/ weatherguyry/ swx2.html.