پیش بینی احتمالاتی دمای کمینه و بیشینه روزانه روی ایران با استفاده از سامانه همادی دو عضوی

نویسندگان

1 دانشیار، پژوهشکده هواشناسی و علوم جو

2 پژوهشکده هواشناسی و علوم جو

10.30467/nivar.2019.186623.1129

چکیده

برای کمّی کردن عدم قطعیت در پیش‌بینی وضع هوا و صدور پیش‌بینی احتمالاتی دمای کمینه و بیشینه روزانه، از دو روش‌ آماری موسوم به آماره برونداد مدل (EMOS) و مدل میانگین‌گیری بیزی (BMA) برای برآورد تابع چگالی احتمال پیش‌بینی استفاده شده است. سامانه همادی در تحقیق حاضر، دو عضوی است که شامل پیش‌بینی‌های یک روزه تا پنج روزه دمای کمینه و بیشینه روزانه روی ایستگاه‌های همدید مراکز استان‌های کشور در بازه زمانی از 10 نوامبر 2017 تا 31 مه 2018 با دو پیکربندی‌ مختلف مدل WRF است. نتایج بدست آمده از این روش‌ها، خطای بسیار کمتری نسبت به خروجی منفرد خام مدل دارد به طوری که متوسط میزان بهبود جذر میانگین مجذور خطای پیش‌بینی قطعی دمای بیشینه وکمینه EMOS نسبت به میانگین پیش‌بینی خام دمای بیشینه وکمینه به ترتیب 37% و 7% است. به طور کلی پیش‌بینی خام دمای کمینه، خطای کمتری نسبت به دمای بیشینه دارد اما بعد از پس‌پردازش بهبود چندانی ندارد.
میانگین بدست آمده در توابع چگالی احتمال در مقایسه با میانگین اعضای سامانه همادی، دارای و میانگین قدرمطلق خطای کمتری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic forecasting of diurnal maximum and minimum temperature using a 2-member ensemble system over Iran

نویسندگان [English]

  • Majid Azadi 1
  • Seyede Atefeh Mohamadi 2
1 Associate Professor, Atmospheric Science and Meteorological Research Center (ASMERC)
2 Atmospheric Science and Meteorological Research Center (ASMERC)
چکیده [English]

To quantify the uncertainty exists in the weather forecasting, and producing the probabilistic forecasting of diurnal maximum and minimum temperature, two important methods named Ensemble Model Output Statistics (EMOS) and Bayesian Model Averaging (BMA) are used to estimate the forecast probabilistic density function. In this study, the ensemble system has two members consisting of 1 to 5 ahead forecasting of diurnal maximum and minimum temperature over synoptic stations of Iran provinces from 10 November 2017 to 31 May 2018. These members are the outputs of the WRF model with two different physical configurations. Results show that the deterministic post-processed forecasts have improved the root mean squared error (RMSE) of deterministic raw forecast, 37% and 7% for mximum and minimum temperature, respectively. Generally, raw forecasts of minimum temperature have less error than maximum temperature, but they are not be improved considerably after post-processing.

کلیدواژه‌ها [English]

  • Ensemble system
  • probabilistic forecasting
  • Probabilistic density function
 

1-       Eckel, F., Allen M., Sittel, M., 2012, Estimation of ambiguity in ensemble forecasts, Weather and Forecasting,vol. 27, pp. 50-69.

2-       Glahn, B., Peroutka, M., Wiedenfeld, J., Wagner, J., Zylstra, G., Schuknecht, B., Jackson, B., 2009, MOS uncertainty estimates in an ensemble framework, Monthly Weather Review,vol. 137, pp. 246-268.

3-       Gneiting, T., Raftery, A. E., Westveld, A. H., Goldman, T., 2005, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, vol. 133, pp. 1098–1118.

4-       Hamill, T. M., Colucci, S. J., 1997, Verification of Eta–RSM short-range forecasts, Monthly Weather Review, vol.125, pp. 1312–1327.

5-       Hamill, T. M., Whitaker, J. S., Wei, X., 2004, Ensemble reforecasting: Improv-ing medium-range forecast skill using retrospective forecasts, Monthly Weather Review, vol. 132, pp. 1434-1447.

6-       Johnson, C., Bowler, N., 2009, On the reliability and calibration of ensemble forecasts, Monthly Weather Review, vol. 137, pp. 1717-1720.

7-       Lorenz, E. N., 1963, The essence of chaos, University of Washington Press.

8-       Mohamadi, S. A., Rahmani, M., Azadi, M., 2016, Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts, Meteorology and Atmospheric Physics, vol. 128, pp. 429–440.

9-       Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, A. B., 1992, Numerical Recipes in FORTRAN: The Art of Scientific, Cambridge University Press.

10-    Raftery, A., Gneiting, T., Balabdaoui, F., Polakowski, A. M., 2005, Using Bayesian model averaging to calibrate forecast ensemble, Monthly Weather Review,vol. 133, pp. 1155-1174.

11-    Roulston, M. S., Smith, L. A., 2003, Combining dynamical and statistical ensembles, Tellus A,vol. 55, pp. 16-30.

12-    Stensrud, D., Skindlov, J., 1996,  Gridpoint predictions of high temperature from a mesoscale model, Weather and Forecasting,vol. 11, pp. 103

13-    E., Collins, D., 2009, Ensemble regression, Monthly Weather Review,vol. 137, pp. 2365-2379.

14-    Warner, T. T., 2011, Numerical Weather and Climate Prediction, Cambridge University Press.

 Wilks, D., 2011, Statistical Methods in the Atmospheric Sciences, Academic Press, New 


دوره 43، 106-107
پاییز و زمستان 1398
صفحه 53-62
  • تاریخ دریافت: 26 آذر 1397
  • تاریخ بازنگری: 13 اسفند 1397
  • تاریخ پذیرش: 18 خرداد 1398