بررسی کارایی برونداد مدل WRF برای تعیین مناسبترین زمان سم‌پاشی درخت سیب و گندم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد هواشناسی، دانشگاه آزاد اسلامی، واحد علوم تحقیقات تهران

2 استادیار، هیات علمی پژوهشکده هواشناسی

3 دانشیار، دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران

4 کارشناسی ارشد هواشناسی، دانشگاه آزاد اسلامی، واحد تهران شمال

چکیده

پیش‌بینی زمان مناسب سم‌پاشی یکی از مهم ترین عملیات زراعی است که منجر به کاهش تعداد دفعات سم پاشی، مقدار سم مصرفی، آلودگی زیست محیطی و افزایش اقتصاد کشاورزی می‌شود. از مهمترین عوامل جوی موثر در تعیین این زمان، مقدار پارامتر‌های دما، باد و بارش می‌باشند. در این مقاله برای پیش‌بینی مقدار این پارامتر‌ها از مدلWRF در یک دوره‌ شش ماهه استفاده و زمان مناسب سم‌پاشی پیش‌بینی و نتایج راستی‌آزمایی شده است. نتایج نشان می‌دهد که مقدارکمیت‌های نسبت صحیح، امتیاز مهارتی، اریبی و آهنگ هشدار‌های نادرست برای محصول سیب به ترتیب 73/0،41/0، 54 /0، 16/0 و برای محصول گندم به ترتیب 66/0، 49/0، 66/0، 16/0 می‌باشند. برای تعیین اهمیت هر کدام از پارامتر‌های پیش‌بینی شده در نتیجه نهایی در سه آزمایش جداگانه، مقادیر دیدبانی متناظر جایگزین برونداد مدل شد. نتایج نشان می‌دهد که اگر مقادیر دیدبانی بارش جانشین مقادیر پیش‌بینی مدل شود، در این صورت مقادیر کمیت‌های یاد شده برای دو محصول سیب و گندم به ترتیب 87/0، 73/0، 91 /0، 11/0 و 86/0، 77/0، 78 /0، 005/0  بهبود می‌یابند. به بیان دیگر بارش و دقت پیش‌بینی‌های بارش بیشترین نقش را در تعیین دقت پیش‌بینی زمان مناسب عملیات سم‌پاشی دارد. پس از اعمال پس پردازش برروی برونداد خام مدل برای کمیت بارش راستی آزمایی و بهبود نتایج ارائه شده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Study of the WRF Performance for the Most Appropriate Apple Tree’s and Wheat Spraying Time

نویسندگان [English]

  • mohadezheh amirtaheri 1
  • majid azhadi 2
  • gholamali kamale 3
  • maedeh fathi 4
چکیده [English]

Accurate forecast of spray scheduling is the most important agricultural operations which reduce costs, number of spraying times, amount of toxic used and amount of pollutants released into the air and hence environmental risk in agricultural operations. Appropriate time for agricultural spraying operations depend on temperature, wind speed, and precipitation. In this study output of the WRF model was used to predict the above mentioned fields for a six months period. Furthermore, the appropriate time has been predicted to spray and results have been verified as well. Verification results show that Proportion Correct, Threat Score, Bias, and False Alarm Ratio .In order to determine each prediction's parameter in last result of three experiments; observational amounts were substituted instead of model's output. Moreover, results show that if observational value of precipitation be substituted instead of models’ values, parameter's values which mentioned above are improved. In other words, the precipitation and its predictions' accuracy play the most superior role in order to reach to accuracy determining Pesticide’s Time Forecasts. After Post processing the direct model output for precipitation, verification and Improved results are presented. 

کلیدواژه‌ها [English]

  • Verification
  • Spraying
  • Proportion Correct
  • Threat Score
  • Bias
  • False Alarm Ratio.  

 

1-     تقی‌زاده، ا.، 1389، بررسی عملکرد مدل‌های منطقه‌ای HRM، MM5 وWRF برای پیش‌بینی بارش روی ایران: پایان نامه کارشناسی ارشد هواشناسی، دانشگاه یزد: 44-42.

2-     راستگو، ز.، 1389، پس‌پردازش برونداد مدل WRF برای سرعت باد بر روی خلیج بوشهر با استفاده از روش پالایه کالمن غیر خطی: پایان‌نامه کارشناسی ارشد هواشناسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران: 35-39.

3-     شیر‌غلامی، م.، 1389، پس ‌پردازش برونداد مدل WRF برای بارندگی در ایران: پایان‌نامه کارشناسی ارشد هواشناسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران: 14-10.

4-     علیزاده، ا.، غ. کمالی.، ف، موسوی.، موسوی بایگی، م.، 1388: هوا و اقلیم­شناسی، انتشارات دانشگاه فردوسی مشهد.

5- Wilks, D. S, 2006, Statistical Methods in the Atmospheric Sciences: Academic Press: 105 pp.

6- Changnon, S. A., 2004, changing uses of climate predictions in agriculture: Implications for prediction research, providers, and users: Wea. Forecast. 19, (3): 606-613.

7- Suleiman, A., and Crago, R., 2004, hourly and daytime evapotranspiration from grassland using radiometric surface temperatures: Agron. J., 96: 384-390.

8- Detlefsen, N., 2006, Probability forecasts for weather-dependent agricultural operations using generalized estimating equations: Tellus, 58:558-564.