طبقه‌بندی آب‌شهاب‌ها با استفاده از اطلاعات مایکروویو ماهواره‌ای و روش شبکه‌های عصبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه فیزیک دانشگاه هرمزگان

2 دانشجوی کارشناسی ارشد هواشناسی – دانشگاه هرمزگان

چکیده

آب‌شهاب‌های موجود در جو، به هر شکلی که باشند (جامد، مایع و گاز)، با تابش مایکروویو (از طریق پراکندگی، جذب و گسیل) برهمکنش می‌کنند. اندازه‌گیری‌های گمانه‌زن مایکروویو پیشرفته واحد B (AMSU-B) روی ماهواره‌های NOAA به نوع، شکل و توزیع اندازه و همچنین رفتار سقوطی آب‌شهاب‌ها در حجم تفکیک ابزار سنجش حساس و در نتیجه برای مطالعه انواع مختلف آب‌شهاب‌های جوی مفید می‌باشند. از جمله کاربرد اطلاعات خرد فیزیکی و طبقه‌بندی آب‌شهاب‌های جوی می‌توان به مقداردهی اولیه مدل‌های ابر و مدل‌های عددی پیش‌بینی آب‌و هوا، مطالعه در خصوص شکل‌گیری و چرخه زندگی بارش و همچنین انتخاب الگوریتم مناسب برای برآورد بارش اشاره کرد. با توجه به این مهم، در این مقاله با استفاده از دمای تابشی اندازه‌گیری شده توسط گمانه‌زن AMSU-B و روش شبکه‌های عصبی مصنوعی بطور همزمان هشت نوع آب‌شهاب‌ مختلف، 1- توفان تندری(TS) 2- باران سنگین(HR) 3- باران سبک(LR) 4- باران متوسط(MR) 5- بارش برف(SF) 6- پوشش برف(SC) 7- آسمان ابری(CLS) 8- آسمان صاف(CS) به هشت کلاس مجزا طبقه‌بندی شده‌اند. از حدود 200 گذر ماهواره طی دوره‌ی مورد مطالعه، بین سال‌های 2000 تا 2010، برای هر نوع آب‌شهاب 200 نمونه و در مجموع 1600 نمونه که تقریبا با گزارش‌های سازمان هواشناسی همزمان بوده‌اند جمع‌آوری شده است. نتایج نشان می‌دهد که انواع کلاس‌های بارش باران، نرمه بارش، بارش متوسط و بارش شدید، با دقتی بین 54 تا 62 درصد، نسبت به سایر کلاس‌های آب‌شهاب‌ها، با دقت کمتری، و انواع دیگر آب‌شهاب‌ها تقریباً با دقتی بیش از 80 درصد بطور صحیح طبقه‌بندی شده‌اند. با قراردادن تمام کلاس‌های بارش باران در یک کلاس واحد (بارش باران RF) روی همرفته دقت طبقه‌بندی شبکه‌ی عصبی به حدود 85% ( 340 الگو از 400 الگو بطور صحیح طبقه‌بندی شده‌اند) ارتقاء می‌یابد. 

کلیدواژه‌ها


عنوان مقاله [English]

Classification of Hydrometeors from Microwave Satellite Data Using an Artificial Neural Networks Method

نویسندگان [English]

  • abolhasan ghibe 1
  • azarmehr khajaee 2
چکیده [English]

Hydrometeors in the atmosphere, on any form (solid, liquid and gases), interact with microwave radiation (through scattering, absorption and emission). The Advanced Microwave Sounding Unit-B (AMSU-B) measurements onboard NOAA satellites are sensitive to the types, shapes, and size distributions as well as fall behaviors of the hydrometeors in the AMSU-B resolution Volume and thus are useful to study different types of atmospheric hydrometeors. These microphysical signatures and classification of atmospheric hydrometeors can be utilized to initialize the cloud/mesoscale numerical weather prediction models, study of precipitation formation and life cycle, and choice of the right algorithm for precipitation estimation.  Therefore, In this paper, the signatures of eight types of hydrometeors,  including Thunderstorms (TS), Heavy rain (HR),  Light rain (LR), Moderate Rainfall (MR), Snowfall (SF), Snow cover (SC), Cloudy condition (CC), and  Clear sky (CS), using AMSU-B data by an artificial neural network method, simultaneously,  have been classified to eight different classes. During the study period (2000 to 2010), from about 200 of satellite passes, for each type of hydrometeor 200 data-sample and  overall 1600 data-sample, which was closest to Iran Meteorology Organization (IMO) reports have been collected. Our results show that different classes of rain, including light, moderate and heavy rainfall, with respect to other classes, with accuracies between 54 to 62% have poor classification capability, and other hydrometeors with an accuracy of about 80% correctly classified.  By considering three classes of rain as a single class (rain fall = RF), the accuracy of neural network classifier increased to 85%; among 400 pattern, about 340 pattern have correctly been classified

کلیدواژه‌ها [English]

  • Hydrometeors
  • AMSU-B
  • Classification

 

1- Gourley, Jonathan J., Tabary, Pierre., and Chatelet, Jacques parent du., 2006, a fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations journal of atmospheric and oceanic technology, vol. 24, pp. 1439-1451.

2- Marchand, Roger., Mace, Gerald g., Ackerman, Thomas., and Stephens, Graeme., 2008, hydrometeor detection using cloudsat an earth-orbiting 94-ghz cloud radar, journal of atmospheric and oceanic technology, vol. 25, pp. 519-533.

3- Mace, Gerald G., Zhang, Qiuqing., Vaughan, Mark., Marchand, Roger., Graeme Stephens, Trepte, Chip., and Winker, Dave., 2009, a description of hydrometeor layer occurrence statistics derived from the first year of merged cloudsat and calipso data, journal of geophysical research, vol. 114, d00a26, doi:10.1029/2007jd009755, 2009

4- Introduction to data mining and knowledge discovery, third edition, two Crowds Corporation, http://www.twocrows.com/intro-dm.pdf, accessed on 12 april 2009.

5- Gupta, Shanti s., and Berger, James o., 1982, statistical decision theory vol. 2, pp.38.

6- Bringi, V. N., Rico-Ramirez, M. A., Thurai, M., 2011, Rainfall Estimation with Operational Polarimetric C-Band Radar in the United Kingdom: Comparison with a Gauge Network and Error Analysis. Journal of Hydrometeorology 12:5, 935-954

7- Hongping and Chandrasekar, V., 1999, Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification, Journal of Atmospheric and Oceanic Technology, Vol. 17, pp. 140-164.

8- Gheiby, A., Sen, P. N., Puranik, D. M., and Karekar, R. N., 2003, Thunderstorm identification from AMSU‐B data using an artificial neural network, Meteorological Applications, Vol.10, No. 4, pp. 329-336.

9- Gheiby, A., Sen, P. N., Puranik, D. M.,  and Karekar, R. N.,  2002: Recognition and Classification of Weather features from AMSU-B Remotely Sensed Information Using an Artificial neural network, IAPRS and SIS, Vol.34, Part 7, pp. 104-107,

10- Gheiby, A., and Mirzadeh, M., Multi-Spectral Classification of Hydrometeors Using AMSU-B Data, presented in 21st Conference on Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction, American Meteorology Society at Washington Dc, USA.

11- Gheiby, A. H.,  Sen, P. N., Tillu, A. D., Puranik, D. M., and Karekar, R. N., Signatures of rain and thunderstorm and their location using AMSU-B data onboard NOAA-15, 16 satellites, Microwave Measurement and Techniques and Applications, Edited by J. Behari, 2003, Anamaya Publisher, New Dehli, India, pp. 134-146.

12- Goodrum, G., Kidwell K. B., and Winston W., 2007, NOAA K L M User’s Guide, Online at: http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/

13- Priddy, Kevin L., Keller, Paul E., Artificial Neural Networks: An Introduction, SPIE Book Store, pp. 180, 2005.