Investigating the relationship between drought parameters and food security using data mining methods (Case study: Alborz province)

Document Type : Original Article


, Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran.



Nowadays, due to the increase in population and the ever-increasing need for food, providing food security is considered one of the essential requirements in every region. On the other hand, the recent droughts are one of the main reasons for the instability in food security and food production in different regions of the world. The purpose of this research is to select a superior model in order to measure the relationship between drought parameters and food security in Alborz province. Therefore, from the data related to precipitation and temperature in order to calculate SPEI meteorological drought index, as well as the data related to the cultivated area and tonnage (tons per hectare) of the two strategic products of wheat and barley, which provide more than 43% of the province's food. It was used in a period of 21 years (1380-1400). Four methods of Spearman, ANN, ANFIS and M5 were used to investigate the relationship between drought and food security parameters in Alborz province. The results showed that in Taleghan and Karaj, the goodness of fit criteria of R2, RMSE and MAE of Spearman, ANN, ANFIS and M5 methods were from 0.752 to 0.736, 0.242 to 0.217, 0.107 to 114 respectively. 0.847 to 0.837, 0.209 to 0.253, and 0.107 to 0.111 are variable. Also, among the algorithms used, the M5 decision tree method was the best model for measuring the correlation between drought variables and food security...


Main Subjects

1.    اسمعیل‌نژاد. (1400). واکاوی بازتاب تغییرات اقلیمی در امنیت غذایی زنان روستایی (مورد مطالعه: دهستان کوهک-اسفندک در شهرستان سراوان). فصلنامه روستا و توسعه پایدار فضا، 2(1)، 40-57.
2.    جمینی، د.، امینی، ع.، قادرمرزی، ح. و توکلی، ج. (1396). سنجش امنست غذایی و واکاوی چالش‌های آن در مناطق روستایی (مطالعه موردی: دهستان بدر، شهرستان روانسر). فصلنلمه برنامه‌ریزی منطقه‌ای، 7(27)، 87-102.
3.    خیز، ز.، زیبایی، م. و فرج‌زاده، ز. (1397). تأثیر خشکسالی بر درآمد و رفاه خانوارها و شاخص تولید غذا. اقتصاد کشاورزی، 12(2)، 21-43.
4.    سواری، م. (1402). الگوی پیشنهادی امنیت غذایی پایدار در شرایط خشکسالی در استان کردستان. نشریه تحلیل فضایی مخاطرات محیطی، 9(4)، 81-104.
5.    کیانی قلعه سرد، س.، شهرکی، ج.، اکبری، ا. و سردار شهرکی، ع. (1397). بررسی اثرات تغییر اقلیم بر امنیت غذایی ایران. مجله مخاطرات محیط طبیعی، 8(22)، 19-40.
6.    Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
7.    Araghinejad, S. (2013). Data-driven modeling: using MATLAB® in water resources and environmental engineering (Vol. 67). Springer Science & Business Media, 292 pp.
8.    Bazrafshan, J., and Khalili, A. (2013). Spatial analysis of drought over Iran during 1963-2003. Desert, 18, 63-71.
9.    Breiman L, Friedman J, Olshen R, Stone C, (1984) Classification and Regression Trees,Chapman& Hall/CRC Press, Boca 
Raton, FL. Development of a decision tree modeling approach .Geoderma 139, Pp. 277-287.
10.    Butler, C., and McFarlane R., (2018), Climate Change, Food Security, and Population Health in the Anthropocene., Encyclopedia of the Anthropocene, Vol. 2, pp 453-459.
11.    Cannarozzo, M., Noto, L. V., Viola, F., 2006. Spatial distribution of rainfall trends in Sicily (1921–2000). Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1201-1211.
12.    Changnon Jr, S.A. and Easterling, W.E. (1989) Measuring drought impacts. Journal of the American Water Resources Association, 25(1): 27-42.
13.    Chemingui, M.A. and Dessus, S. (2008) Assessing non-tariff barriers in Syria. Journal of Policy Modeling, 55(30): 917-928.
14.    Diagne, R.2013.Food security and agricultural liberalization, thesis for obtaining doctor of economic sciences, rapporteur: mr. jerome ballet, Universite de nice sophia antipolis.
15.    Fæhn, T. and Holmøy, E. (2003) Trade liberalisation and effects on pollutive emissions to air and deposits of solid waste. A general equilibrium assessment for Norway. Economic Modelling, 20(7): 703-727.
16.    FAO, IFAD, UNICEF, WFP and WHO. 2018. The state of food security and nutrition in the world 2018. Building climate resilience for food security and nutrition. (FAO), Rome, Italy.
17.    Food and Agriculture Organization (FAO). (2011) Drought-related food insecurity: A focus on the Horn of Africa.
18.    Food Security Network. 2012. Concept of food security [Internet]. Retrieved from
19.    Garnett, T. 2013. Three perspectives on sustainable food security: efficiency, demand restraint, food system transformation. What role for LCA?, Journal of Cleaner Production, 4(14): 41.
20.    Guhathakurta, P., Menon, P., Mazumdar, A. B., and Sreejith, O. P. (2010). Changes in extreme rainfall events and flood risk in India during the last century. National Climatic Centre, Research Report, 3, 1-20.
21.    Hosking, J. R. (1990). L-moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the 
royal statistical society. Series B (Methodological), 105-124.
22.    Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). "Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence." IEEE Transactions on automatic control, 42(10), 1482-1484.
23.    Khanna, T. (1990). Foundation of neural networks. Addison-Wesley Publishing Company. U.S.A. 327 pp.
24.    Kişi, Ö. (2009). "Evolutionary fuzzy models for river suspended sediment concentration estimation." Journal of Hydrology, 372(1–4), 68-79.
25.    Krattson, C., Haves, M. and Philips, T. (1998) How to reduce drought risk. Western drought coordination council. Retrieved from:
26.    Lejour, A., de Mooij, R. and Capel, C. (2004) Assessing the economic implications of Turkish accession to the EU. CPB Netherlands Bureau for Economic Policy Analysis.
27.    Mann, H.B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
28.    McKee, T.B., Doesken, N.J., and Kleist J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology: American Meteorological Society, 17(22), 179-183.
29.    Misselhorn, A.; P. Aggarwal, P. Ericksen, P. Gregory, L. H. Phathanothai, J. Ingram and K. Wiebe. 2012. A vision for attaining food security. Current Opinion in Environmental Sustainability, 4, 7– 17.
30.    Nairizi, S. (2003) Drought management strategies risk management versus management Retrieved. <>.
31.    Nourani, V., Komasi, M., and Mano, A. (2009). "A multivariate ANN-wavelet approach for rainfall–runoff modeling." Water resources management, 23(14), 2877.
32.    Palmer, W. C. (1965) Meteorological drought, Washington, D.C., USA: US Department of Commerce, Weather Bureau.
33.    Paul, B.K. (1998) Coping mechanisms practiced by drought victims (1994/5) in North Bengal, Bangladesh. Applied Geograghy, 18(4): 355-373.
34.    Press, V., and Teukolsky, F. (1992). Numerical Recipes in C: The Art of Scientific 
Computing (2nd Ed.). Journal of Simulation, 31(1), 640.
35.    Shong Chok, N. (2010). Pearson’s Versus Spearman’s and Kendal’s Correlation Coefficients for Continuous Data. M.Sc. thesis, University of Pittsburgh, 43pp.
36.    Stage, F.K., Carter, H.C. and Nora, A. (2004) Path analysis: An introduction and analysis of a decade of research. The Journal of Educational Research, 98(1): 5-13.
37.    Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
38.    Vicente-Serrano, S.M., Begueria, S., Lpez-Moreno, J., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, Journal of Climatology, 23(7), 1696-718.
39.    Wilhite, D.A. and Glantz, M.H. (1985) Understanding: The drought phenomenon: The role of definitions. Water international, 10(3): 111-120.
40.    Wilhite, D.A. and Pulwarty, R.S. (2005) Drought and water crises: Lessons learned and 
the road ahead. In Wilhite, D.A. (ed.). Drought and water crises: Science, technology, and management issues. Taylor & Francis Group.
41.    Wilhite, D.A., Betterill, L. and Monnik, K. (2005) National drought policy: Lessons Learned from Australia, South Africa and the United States. In Wilhite, D.A. (ed.). Drought and water crises: Science, tecnologhy, and management issues. Taylor & Francis Group.
42.    Winchester, N. (2009) Is there a dirty little secret? Non-tariff barriers and the gains from trade. Journal of Policy Modeling, 31, 819–834.
43.    World Bank. 2009. Water Resource Management. [online] Available at: epk:148956~pipk:216618~thesitepk:4602123,00html.
44.    Wossen, T., Berger, T., Haile, M.G. & Troost, C. (2017), Impacts of climate variability and food price volatility on household income and food security of farm households in East and West Africa. Agricultural Systems.
45.    Young, R.A. (1995) Coping with a severe sustained drought on the Colorado River: Introduction and overview. Journal of the American Water Resources Association, 31(5): 779-788.
46.    Yousefi, A., Khalilan, S. and Hajian, M.H. (2010) The role of water in Iranian economy: A CGE modeling approach, 11th Conference on Economic Modelling, Istanbul, 7-11 July.
47.    Yue, S., Pilon, P., and Cavadias, G. (2002). Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in 
hydrological series. Journal of hydrology, 259(1-4), 254-271.
48.    Zeller, M. 2006. An Operational Method for Assessing the Poverty Outreach Performance of Development Policies and Projects: Results of Case Studies in Africa, Asia, and Latin America. World Development, 34 (3): 446.
Volume 47, 122-123 - Serial Number 122
September 2023
Pages 48-62
  • Receive Date: 10 September 2023
  • Revise Date: 30 September 2023
  • Accept Date: 02 October 2023
  • First Publish Date: 02 October 2023