The Sensitivity Analysis of Whitecapping Dissipation Term for Calibration of SWAN Model Forced with ERA5 Winds in the Gulf of Oman

Document Type : Original Article


1 Weather Forecaster at Iranian Meteorological Organization

2 Faculty of Meteorological Research Institute

3 Director of Oceanic and Atmospheric Science Centre (OASC), Iranian Meteorological Organization

4 I.R. of Iran Meteorological Organization (IRIMO)



Although the accuracy of wind-driven wave height simulation largely depends on the quality of the forced wind field, despite the production of high-quality wind products, the wind fields used for ocean waves modeling are more or less subject to bias. Minimizing the impact of wind errors on wave model output is not a long-term operational solution. A more common method is to calibrate the wave model, which is generally implemented by setting certain coefficients in these models. In the present study, the sensitivity of the simulations of the significant wave height to the terms of the wind input and whitecapping dissipation in a third generation wave model has been investigated. For this purpose, 36 different configurations of the wave model have been used. the results of this study allow us to see the response of the SWAN model as a function of physical parameters. Calibration of the SWAN model using the ERA5 forced wind field significantly improved the simulation accuracy in the Oman Sea. For the Oman Sea, it is recommended to use the expressions of wind input and whitecapping dissipation based on the Janssen formulation with the coefficient C_ds=4.0 in the simulation. Considering the error statistics, the same finding was obtained when the model results were compared with the measurements of the wave recorder buoy of the I.R. of Iran Meteorological Organization (IRIMO) in the northern part of the Oman Sea.


Main Subjects

1.    Akinsanola, A. A., Ogunjobi, K. O., Abolude, A. T., & Salack, S. (2021). Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. Environmental Research Letters, 16(4), 44033.
2.    Akpınar, A., Bingölbali, B., & Van Vledder, G. P. (2016). Wind and wave characteristics in the Black Sea based on the SWAN wave model forced with the CFSR winds. OceanEngineering, 126, 276–298.
3.    Alipour, A., Siadatmousavi, S. M., & Jose, F. (2021). Numerical simulation of waves in the Caspian Sea: calibration and verification of the observation-based source terms. Ocean Dynamics, 71(6), 699–714.
4.    Alves, J. H. G. M., & Banner, M. L. (2003). Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. Journal of Physical Oceanography, 33(6), 1274–1298.
5.    Amarouche, K., Akpınar, A., Bachari, N. E. I., Çakmak, R. E., & Houma, F. (2019). Evaluation of a high-resolution wave hindcast model SWAN for the West Mediterranean basin. Applied Ocean Research, 84, 225–241.
6.    Amarouche, K., Akpınar, A., Soran, M. B., Myslenkov, S., Majidi, A. G., Kankal, M., & Arkhipkin, V. (2021). Spatial calibration of an unstructured SWAN model forced with CFSR and ERA5 winds for the Black and Azov Seas. Applied Ocean Research, 117, 102962.
7.    Amrutha, M. M., Kumar, V. S., Sandhya, K. G., Nair, T. M. B., & Rathod, J. L. (2016). Wave hindcast studies using SWAN nested in WAVEWATCH III-comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea. Ocean Engineering, 119, 114–124.
8.    Ardhuin, F., & Roland, A. (2013). The development of spectral wave models: coastal and coupled aspects. Proceedings of Coastal Dynamics, 2013, 7th.
9.    Battjes, J. A., & Stive, M. J. F. (1985). Calibration and verification of a dissipation model for random breaking waves. Journal of Geophysical Research: Oceans, 90(C5), 9159–9167. 
10.    Beyramzade, M., Siadatmousavi, S. M., & Nik, M. M. (2019). Skill assessment of SWAN model in the red sea using different wind data. Regional Studies in Marine Science, 30, 100714.
11.    Beyramzadeh, M., Siadatmousavi, S. M., & Derkani, M. H. (2021). Calibration and skill assessment of two input and dissipation parameterizations in WAVEWATCH-III model forced with ERA5 winds with application to Persian Gulf and Gulf of Oman. Ocean Engineering, 219, 108445.
12.    Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649–7666. 
13.    Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.-R., Breivik, Ø., Carniel, S., Jensen, R. E., Portilla-Yandun, J., & Rogers, W. E. (2018). Wave modelling in coastal and inner seas. Progress in Oceanography, 167, 164–233.
14.    Cavaleri, L., Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., & Herbers, T. H. C. (2007). Wave modelling–the state of the art. Progress in Oceanography, 75(4), 603–674.
15.    Cavaleri, L., Barbariol, F., Benetazzo, A., & Waseda, T. (2019). Ocean wave physics and modeling: The message from the 2019 wise meeting. Bulletin of the American Meteorological Society, 100(12), ES297–ES300.
16.    Cavaleri, L., & Rizzoli, P. M. (1981). Wind wave prediction in shallow water: Theory and applications. Journal of Geophysical Research: Oceans, 86(C11), 10961–10973.
17.    DHI. (2017). MIKE 21, Spectral Wave Module, Scientific Documentation.
18.    Eldeberky, Y., & Battjes, J. A. (1996). Spectral modeling of wave breaking: Application to Boussinesq equations. Journal of Geophysical Research: Oceans, 101(C1), 1253–1264.
19.    Günther, H., Hasselmann, S., & Janssen, P. A. (1992). The WAM Model Cycle 4 (No. DKRZ-TR–4 (REV. ED.)). Hamburg: Deutsches Klimarechenzentrum (DKRZ).
20.    Hasselmann, K. (1974). On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology, 6(1–2), 107–127.
21.    Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., & Kruseman, P. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). In Ergänzungsheft 8-12. Delft University of Technology.
22.    Hasselmann, S., & Hasselmann, K. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography, 15(11), 1369–1377. 
23.    Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., & Schepers, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
24.    Janssen, P. A. E. M. (1989). Wave-induced stress and the drag of air flow over sea waves. Journal of Physical Oceanography, 19(6), 745–754.
25.    Janssen, P. A. E. M. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(11), 1631–1642. 
26.    Janssen, P. A. E. M. (1992). Consequences of the effect of surface gravity waves on the mean air flow. In Breaking Waves (pp. 193–198). Springer.
27.    Komen, G. J., Hasselmann, K., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8), 1271–1285.
28.     Kutupoğlu, V., Çakmak, R. E., Akpınar, A., & van Vledder, G. P. (2018). Setup and evaluation of a SWAN wind wave model for the Sea of Marmara. Ocean Engineering, 165, 450–464.
29.    Madsen, O. S., Poon, Y.-K., & Graber, H. C. (1988). Spectral wave attenuation by bottom friction: Theory. Twenty First Coastal Eng Conf, 492–504.
30.    Mazzaro, E., Palmeira, A. C. P. de A., & Libonati, R. (2021). Estimation of return periods of wind speed and gust and significant wave height in the Southwest Atlantic. S & G J., 16, 84–100.
31.    Miles, J. W. (1957). On the generation of surface waves by shear flows. Journal of Fluid Mechanics, 3(2), 185–204.
32.    Nelson, R. C. (1994). Depth limited design wave heights in very flat regions. Coastal Engineering, 23(1–2), 43–59. 
33.    Pallares, E., Sánchez-Arcilla, A., & Espino, M. (2014). Wave energy balance in wave models (SWAN) for semi-enclosed domains–Application to the Catalan coast. Continental Shelf Research, 87, 41–53.
34.    Phillips, O. M. (1957). On the generation of waves by turbulent wind. Journal of Fluid Mechanics, 2(5), 417–445.
35.    Pierson Jr, W. J., & Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. Journal of Geophysical Research, 69(24), 5181–5190.
36.    Ris, R. C., Holthuijsen, L. H., & Booij, N. (1999). A third‐generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research: Oceans, 104(C4), 7667–7681.
37.    Siadatmousavi, S. M., Jose, F., & Stone, G. W. (2011a). Evaluation of two WAM white capping parameterizations using parallel unstructured SWAN with application to the Northern Gulf of Mexico, USA. Applied Ocean Research, 33(1), 23–30.
38.    Siadatmousavi, S. M., Jose, F., & Stone, G. W. (2011b). The effects of bed friction on wave simulation: implementation of an unstructured third-generation wave model, SWAN. Journal of Coastal Research, 27(1), 140–152.
39.    Siahsarani, A., Karami Khaniki, A., Aliakbari Bidokhti, A.-A., & Azadi, M. (2020). Sensitivity analysis of the numerical aspect of the SWAN for the tropical cyclone wave simulations in the Gulf of Oman. Arabian Journal of Geosciences, 13(15), 1–14.
40.    Siahsarani, A., Karami Khaniki, A., Aliakbari Bidokhti, A.-A., & Azadi, M. (2021). Numerical modeling of tropical cyclone-induced storm surge in the gulf of oman using a storm surge–wave–tide coupled model. Ocean Science Journal, 56(3), 225–240.
41.    Smith, W. H. F., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956–1962. 
42.    Snyder, R. L., Dobson, F. W., Elliott, J. A., & Long, R. B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid Mechanics, 102, 1–59.
43.    Stopa, J. E. (2018). Wind forcing calibration and wave hindcast comparison using multiple reanalysis and merged satellite wind datasets. Ocean Modelling, 127, 55–69.
44.    SWAN, S. (2015). technical documentation (SWAN Cycle III version 41.01 A). In Delft University of Technology. Delft University of Technology (TU Delft).Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research:Atmospheres, 106(D7), 7183–7192.
45.    Thomas, T. J., & Dwarakish, G. S. (2015). Numerical wave modelling–A review. Aquatic Procedia, 4, 443–448.
46.    Tolman, H. L. (1992). Effects of numerics on the physics in a third-generation wind-wave model. Journal of Physical Oceanography, 22(10), 1095–1111.
47.    Tolman, H. L., Balasubramaniyan, B., Burroughs, L. D., Chalikov, D. V, Chao, Y. Y., Chen, H. S., & Gerald, V. M. (2002). Development and implementation of wind-generated ocean surface wave modelsat NCEP. Weather and Forecasting, 17(2), 311–333.
48.    Van der Westhuysen, A. (2007). Ontwikkelingen in het spectraal modelleren van windgolven in kustgebieden= Advances in the spectral modelling of wind waves in the nearshore.
49.    van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Engineering, 54(2), 151–170. 
50.    Van Vledder, G. P., & Akpınar, A. (2015). Wave model predictions in the Black Sea: Sensitivity to wind fields. Applied Ocean Research, 53, 161–178.
51.    WAMDI Group. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775–1810. Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194.
52.    Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313. 
53.    Wu, W., Liu, Z., Zhai, F., Li, P., Gu, Y., & Wu, K. (2021). A quantitative method to calibrate the SWAN wave model based on the whitecapping dissipation term. Applied Ocean Research, 114, 102785.
54.    Yan, L. (1987). An improved wind input source term for third generation ocean wave modelling. Wetenschappelijk Rapport= Scientific Report. Koninklijk Nederlands Meteorologisch Instituut.