Projections of the sea level rise and sea surface temperature of Pars Sea region under SSPs scenarios

Document Type : Original Article

Authors

1 cri

2 Climate modeling research group, Climatology Research Institute(CRI)

10.30467/nivar.2022.360864.1225

Abstract

The Arabian Sea is a region of the northern Indian Ocean. The Arabian Sea's surface area is about 3,862,000 km2. The maximum width of the sea is approximately 2,400 km, and its maximum depth is 4,652 meters. The biggest river flowing into the sea is the Indus River. The Persian Gulf is a semi-enclosed epicontinental water body that is located at the northwestern corner of the Indian Ocean. The basin is connected to the Arabian Sea and the Gulf of Oman via the Strait of Hormuz. These water bodies were called Pars Sea. Sea surface temperatures of Persian gulf can exceed 35°C in summer ,while in winter the temperature can fall to <10°C. These regions contributes significantly to current climate change, and suffers deeply from the consequences of this phenomenon. Changes in sea surface temperature (SST) and sea level rise (SLR) affect all forms of life. Therefore, this research aims to project the sea temperature changes of the Arabian Sea and the Persian Gulf, as well as the changes in the sea level of the Persian Gulf and the Oman Sea, based on the output of the CMIP6 under SSPs scenarios for the period 2021-2040.

Keywords


1.    جعفری، اعظم، ترابی آزاد، مسعود، سهرابی، شهاب، (1395). بررسی اثرات افزایش دمای ناشی از تغییر اقلیم جهانی بر میانگین سطح تراز آب(MSL)در سواحل شمالی خلیج فارس(سواحل استان هرمزگان، فصلنامه علوم و تکنولوژی محیط زیست، (3)18، 81-97. 
2.    شجاع ، فائزه، خسروی، محمود، شمسی پور، علی اکبر، (1399). تحلیل شرایط همدید چرخندهای حاره ای ساگار و میکونو در دریای عرب سال 2018، سپهر، (113)29، 93-112.
3.    قویدل رحیمی، یوسف،(1390).نگاشت و تحلیل همگرایی جریان رطوبت جو طی بارش فوق سنگین ناشی از طوفان حاره ای فت در سواحل چابهار، مدرس علوم انسانی- برنامه ریزی و آمایش فضا، 2، 101-118.
4.    مشهدی لیلا، حاجی زاده ذاکر ناصر، سلطانپور محسن، مقیمی سعید، (1392). شبیه سازی عددی امواج و مد ناشی از توفان گنو در خلیج چابهار. مهندسی دریا، (9)17، ۵۰-۳۷.
5.    ملااسماعیل پور, سعید, محمد مهدیزاده, مهدی, حسن زاده, اسماعیل, خلیل آبادی, محمدرضا. (1398). بررسی تغییرات دما و شوری سطح دریای عربی از سال 2010 تا 2017. دریافنون، (3)6، 97-88.
6.    Alam, M. M., Hossain, M. A., & Shafee, S. (2003). Frequency of Bay of Bengal cyclonic storms and depressions crossing different coastal zones. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(9), 1119-1125.
7.    Belanger, J. I., Webster, P. J., Curry, J. A., & Jelinek, M. T. (2012). Extended prediction of North Indian Ocean tropical cyclones. Weather and forecasting, 27(3), 757-769. 
8.    Bruyère, C. L., Holland, G. J., & Towler, E. (2012). Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. Journal of Climate, 25(24), 8611-8626.
9.    Emanuel, K., & Nolan, D. S. (2004, July). Tropical cyclone activity and the global climate system. In 26th conference on hurricanes and tropical meteorolgy.
10.    Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. 
11.    Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E. B., Cheripka, A., ... & Abraham, J. P. (2021). An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science.  
12.    Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., ... & Takahashi, K. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific model development, 12(4), 1443-1475. 
13.    Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), 669-700.
14.    http:// www.persiangulfstudies.com /fa/ pages/875/
15.    http://www.persiangulfstudies.com/fa
16.    IPCC, 2021. “Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” , [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].Cambridge University Press. In Press.
17.    Mahongo, S. (2006, November). Impacts of sea level change. In ODINAFRICA/GLOSS Training Workshop on Sea-Level Measurement and Interpretation, Oostende, Belgium (pp. 13-24). 
18.    McCreary Jr, J. P., Kohler, K. E., Hood, R. R., Smith, S., Kindle, J., Fischer, A. S., & Weller, R. A. (2001). Influences of diurnal and intraseasonal forcing on mixed‐layer and biological variability in the central Arabian Sea. Journal of Geophysical Research: Oceans, 106(C4), 7139-7155. 
19.    Murakami, H., Sugi, M., & Kitoh, A. (2013). Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Climate Dynamics, 40(7), 1949-1968.
20.    Nyadjro, E. S., Subrahmanyam, B., Murty, V. S. N., & Shriver, J. F. (2012). The role of salinity on the dynamics of the Arabian Sea mini warm pool. Journal of Geophysical Research: Oceans, 117(C9). 
21.    Rajendran, K., Nanjundiah, R. S., Gadgil, S., & Srinivasan, J. (2012). How good are the simulations of tropical SST–rainfall relationship by IPCC AR4 atmospheric and coupled models?. Journal of earth system science, 121(3), 595-610. 
22.    Rana, A. S., Zaman, Q., Afzal, M., & Haroon, M. A. (2014). Characteristics of sea surface temperature of the Arabian Sea Coast of Pakistan and impact of tropical cyclones on SST. Pakistan Journal of Meteorology, 11(21). 
23.    Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., ... & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14).
24.    Sinha.P.C.,2003. “Sea Level Rise due to Global Warming and Climate Variability”, Antarctic Geosciences, Ocean atmosphere Interaction and Paleoclimatology .pp 148-159.
25.    Tonelli, M., Signori, C. N., Bendia, A., Neiva, J., Ferrero, B., Pellizari, V., & Wainer, I. (2021). Climate projections for the southern ocean reveal impacts in the marine microbial communities following increases in sea surface temperature. Frontiers in Marine Science, 8, 636226.
26.    Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742), 1844-1846.
27.    Yan, Q., Wei, T., & Zhang, Z. (2017). Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations. Climate Dynamics, 48(3), 957-970.1.    جعفری، اعظم، ترابی آزاد، مسعود، سهرابی، شهاب، (1395). بررسی اثرات افزایش دمای ناشی از تغییر اقلیم جهانی بر میانگین سطح تراز آب(MSL)در سواحل شمالی خلیج فارس(سواحل استان هرمزگان، فصلنامه علوم و تکنولوژی محیط زیست، (3)18، 81-97. 
2.    شجاع ، فائزه، خسروی، محمود، شمسی پور، علی اکبر، (1399). تحلیل شرایط همدید چرخندهای حاره ای ساگار و میکونو در دریای عرب سال 2018، سپهر، (113)29، 93-112.
3.    قویدل رحیمی، یوسف،(1390).نگاشت و تحلیل همگرایی جریان رطوبت جو طی بارش فوق سنگین ناشی از طوفان حاره ای فت در سواحل چابهار، مدرس علوم انسانی- برنامه ریزی و آمایش فضا، 2، 101-118.
4.    مشهدی لیلا، حاجی زاده ذاکر ناصر، سلطانپور محسن، مقیمی سعید، (1392). شبیه سازی عددی امواج و مد ناشی از توفان گنو در خلیج چابهار. مهندسی دریا، (9)17، ۵۰-۳۷.
5.    ملااسماعیل پور, سعید, محمد مهدیزاده, مهدی, حسن زاده, اسماعیل, خلیل آبادی, محمدرضا. (1398). بررسی تغییرات دما و شوری سطح دریای عربی از سال 2010 تا 2017. دریافنون، (3)6، 97-88.
6.    Alam, M. M., Hossain, M. A., & Shafee, S. (2003). Frequency of Bay of Bengal cyclonic storms and depressions crossing different coastal zones. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(9), 1119-1125.
7.    Belanger, J. I., Webster, P. J., Curry, J. A., & Jelinek, M. T. (2012). Extended prediction of North Indian Ocean tropical cyclones. Weather and forecasting, 27(3), 757-769. 
8.    Bruyère, C. L., Holland, G. J., & Towler, E. (2012). Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. Journal of Climate, 25(24), 8611-8626.
9.    Emanuel, K., & Nolan, D. S. (2004, July). Tropical cyclone activity and the global climate system. In 26th conference on hurricanes and tropical meteorolgy.
10.    Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. 
11.    Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E. B., Cheripka, A., ... & Abraham, J. P. (2021). An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science.  
12.    Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., ... & Takahashi, K. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific model development, 12(4), 1443-1475. 
13.    Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), 669-700.
14.    http:// www.persiangulfstudies.com /fa/ pages/875/
15.    http://www.persiangulfstudies.com/fa
16.    IPCC, 2021. “Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” , [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].Cambridge University Press. In Press.
17.    Mahongo, S. (2006, November). Impacts of sea level change. In ODINAFRICA/GLOSS Training Workshop on Sea-Level Measurement and Interpretation, Oostende, Belgium (pp. 13-24). 
18.    McCreary Jr, J. P., Kohler, K. E., Hood, R. R., Smith, S., Kindle, J., Fischer, A. S., & Weller, R. A. (2001). Influences of diurnal and intraseasonal forcing on mixed‐layer and biological variability in the central Arabian Sea. Journal of Geophysical Research: Oceans, 106(C4), 7139-7155. 
19.    Murakami, H., Sugi, M., & Kitoh, A. (2013). Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Climate Dynamics, 40(7), 1949-1968.
20.    Nyadjro, E. S., Subrahmanyam, B., Murty, V. S. N., & Shriver, J. F. (2012). The role of salinity on the dynamics of the Arabian Sea mini warm pool. Journal of Geophysical Research: Oceans, 117(C9). 
21.    Rajendran, K., Nanjundiah, R. S., Gadgil, S., & Srinivasan, J. (2012). How good are the simulations of tropical SST–rainfall relationship by IPCC AR4 atmospheric and coupled models?. Journal of earth system science, 121(3), 595-610. 
22.    Rana, A. S., Zaman, Q., Afzal, M., & Haroon, M. A. (2014). Characteristics of sea surface temperature of the Arabian Sea Coast of Pakistan and impact of tropical cyclones on SST. Pakistan Journal of Meteorology, 11(21). 
23.    Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., ... & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14).
24.    Sinha.P.C.,2003. “Sea Level Rise due to Global Warming and Climate Variability”, Antarctic Geosciences, Ocean atmosphere Interaction and Paleoclimatology .pp 148-159.
25.    Tonelli, M., Signori, C. N., Bendia, A., Neiva, J., Ferrero, B., Pellizari, V., & Wainer, I. (2021). Climate projections for the southern ocean reveal impacts in the marine microbial communities following increases in sea surface temperature. Frontiers in Marine Science, 8, 636226.
26.    Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742), 1844-1846.
27.    Yan, Q., Wei, T., & Zhang, Z. (2017). Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations. Climate Dynamics, 48(3), 957-970.
  • Receive Date: 13 September 2022
  • Revise Date: 21 September 2022
  • Accept Date: 21 September 2022
  • First Publish Date: 21 September 2022