Agricultural Drought Monitoring Using Climatic, Vegetation and Soil Moisture Data in Hormozgan Province

Document Type : Original Article

Authors

1 M.Sc. in Watershed Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan

2 Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan

10.30467/nivar.2022.352541.1224

Abstract

The current study deals with the monitoring and evaluation of soil moisture and vegetation changes using remote sensing technique and its relationship with the standardized precipitation-evapotranspiration index in Bandar-Dij and Kol-Mehran watersheds in Hormozgan province. For this purpose, soil moisture data at a depth of 0-10 cm was calculated from GLDAS satellite images and standardized soil moisture drought index (SMDI) and standardized normalized difference vegetation index (SNDVI) were used to calculate changes in vegetation cover. The results of the correlation between SPEI and Standardized Moisture Drought Index (SMDI) showed that in all sub-basins, the correlation coefficients increase with the increase of the time scale, and the highest correlation is related to the Minab sub-basin (R=0.764) in the 12-month time scale. Examining the characteristics of drought (severity-duration and magnitude) showed that SPEI showed more intensities in shorter periods of time than SMDI, so it shows more magnitudes of drought. The investigation of the standardized vegetation cover index showed that in most of the sub-basins, since 2012, the decreasing trend of vegetation cover is evident. Investigating the relationship between SPEI and SMDI and SNDVI showed that SNDVI has a high correlation with SPEI and SMDI in a long-term time scale. A comparison of historical droughts between the three indices showed that, although all three indices often showed drought conditions, SPEI always showed extreme conditions compared to changes in soil moisture and vegetation, indicating a delayed response to changes in soil moisture. and vegetation to meteorological drought.

Keywords


1.    بایبوردی، م؛ 1380، اصول مهندسی آبیاری، روابط آب و خاک، جلد اول، انتشارات دانشگاه تهران، ص 709 .
2.    جمالی، ب.، ج. احمدیان، ج، گل مکانی و س. تکتم، 1381، ضرورت پایش وضعیت رطوبت خاک در افزایش بهره‌وری آب کشاورزی، یازدهمین همایش کمیته ملی آبیاری و زهکشی ایران، صفحات 390-376.
3.    مظفری، الف.، الف. بذرافشان و ن. مرادی، 1399، تغییرات زمانی و مکانی خصوصیات خشکسالی هواشناسی در ایران تحت‌ تأثیر سناریوهای تغییر اقلیم، نشریه شمـاره 16 ، پاییز و زمستان 1399 ،صفحات 153 تا 168.
4.    Balint, Z., Mutua, F.M. & Muchiri, P. 2011. “Drought Monitoring with the Combined Drought Index”. Journalof Methodology and Software. FAO-SWALIM Nairobi, Kenya:1-28.
5.    Balint, Z., Mutua, F., Muchiri, P., & Omuto, C. T. 2013. Monitoring drought with the combined drought index in Kenya. In Developments in earth surface processes (Vol. 16, pp. 341-356). Elsevier.
6.    Chen, T., Xia, G., Liu, T., Chen, W., and Chi, D., 2020, Assessment of Drought Impact on Main cereal crops using a standardized Precipitation Evapotranspiration Index in Liaoning province, china, 8.1069.
7.    Cohen, J. 1968. Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychological bulletin, 70(4), 213.
8.    Javed, T., Li, Y., Rashid, S., Li, F., Hu, Q., Feng, H., ... & Pulatov, B. 2020. Performance and relationship of four different agricultural drought indices for drought monitoring in China's mainland using remote sensing data. Science of The Total Environment, 143530.
9.    Kassaye, A. Y., Shao, G., Wang, X., & Wu, S. 2020. Quantification of drought severity change in Ethiopia during 1952–2017. Environment, Development and Sustainability, 1-26.
10.    Mbatha, N., & Xulu, S. 2018. Time series analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of recent intense drought. Climate, 6(4), 95.
11.    Safavi, H.R., Esfahani, M.K. & Zamani, A.R. 2014. Integrated Index for Assessment of Vulnerability to Drought, Case Study: Zayandehrood River Basin, Iran. Water resources management 28 (6), 1671-1688. Sheffield, J., Lobell, D.B. &Wood E. F. 2010. Global Drought Monitoring and Forecasting, based on Satellite Data and Land Surface Modeling, American Geophysical Union, Fall Meeting, abstract #H23B-1189.
12.    Surendran, U., Kumar, V., Ramasubramoniam, S. & Raja, P. 2017. Development of Drought Indices for Semi-Arid Region Using Drought Indices Calculator (DrinC) – A Case Study from Madurai District, a Semi- Arid Region in India. Water Resources Management 31 (11), 3593-3605.
13.    Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. 2010, A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7): 1696-1718.
14.    Walker, J. P. & Houser, P.R. 2004. Requirements of a global near-surface soil moisture mission: accuracy, repeat time, and spatial resolution. Advances in Water Resources, 27, 785- 801.
15.    Zhao, S.,Yang, Y., Qiu, G., Qin, Q., Yao, Y., Xiong, Y. & Li. C. 2010. Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient, International Journal of Applied Earth Observation and Geoinformation, Volume 12, Issue 5: 351–358.
16.    Zhe, Y., Tingwu, L., Qinghong, Y., Zhanpneg, C. & Yuequn, D. 2013. A near-infrared reflectance sensor for soil surface moisture measurement, Computers and Electronics in Agriculture, vol, 99: 101-107.
17.    Zuliqar, A., Ijaz, H., Muhammad, F., Hafiza, M. N., Mitwali, A. M., Tajammal, H. & Sadaf, S. 2017. A Novel Multi-Scalar Drought Index for Monitoring Drought: the Standardized Precipitation Temperature Index. Water Resources Management 31 (15), 4957- 4969.
18.    -Thenkabail, P.S, Gamage M.S.D.N. & Samakhtin, VU., 2002, Evaluation of narrow band and broadband vegetation indices for determining optimal hyper-spectral wavebands for agricultural crop characterization, Photogrammetric Engineering and Remote Sensing 68: 607–621.
19.    Azhdari, Z., Bazrafshan, O., Zamani, H., Shekari, M., & Singh, V. P. 2021. Hydro-meteorological drought risk assessment using linear and nonlinear multivariate methods. Physics and Chemistry of the Earth, Parts A/B/C, 123, 103046.
20.    Li, X., Li, Y., Chen, A., Gao, M., Slette, I. J., & Piao, S. 2019. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and Forest Meteorology, 269, 239-248.
21.    Das, P. K., Chandra, S., Das, D. K., Midya, S. K., Paul, A., Bandyopadhyay, S., & Dadhwal, V. K. 2020. Understanding the interactions between meteorological and soil moisture drought over Indian region. Journal of Earth System Science, 129(1), 1-17.
22.    Jin, S., & Feng, G. 2013. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Global and Planetary Change, 106, 20-30.
23.    Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., ... & Toll, D. 2004. The global land data assimilation system. Bulletin of the American Meteorological society, 85(3), 381-394. 
  • Receive Date: 09 August 2022
  • Revise Date: 18 September 2022
  • Accept Date: 19 September 2022
  • First Publish Date: 19 September 2022