The Review of Physical Details of the Land Surface Schemes used in Numerical Weather Prediction Model

Document Type : Original Article

Authors

Abstract

Land Surface Schemes (LSMs) are among the most important components used in climate predictions, numerical weather prediction and hydrology. Their most important task is the solution of energy and water budget in land surface. MM5 model is the fifth- generation NCAR / Penn State mesoscale model used in studying of air pollution, numerical weather prediction and hydrology. This model contains of land surface parameterization schemes, radiation, convection, boundary layer and rainfall schemes, which are connected directly to each other. The Land surface parameterization scheme in this mesoscale model contains of Bucket, Force-Restore, five- layer soil, OSU and PX schemes. In this paper, according to the importance of the land surface schemes, it has been tried to study the physics details of these land surface schemes used in mesoscale model of MM5 in detail.

Keywords


  1.  

    1. Bhumralkar, C. M., 1975, Numerical experiments on the computation of ground surface temperature in atmospheric general circulation models, J. Appl. Meteor., 14, 1246-1258.
    2. Blackadar, A. K., 1976, Modeling the nocturnal boundary layer, In: Proceedings of the Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, American Meteorology Society, Boston, Mass, 46-49.
    3. Chen, F., and J. Dudhia, 2001, Coupling and advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system, Part I: Model implementation and sensitivity, Mon. Wea. Rev., 129, 569-585.
    4. Chen, F., and J. Dudhia, 2001, Coupling and advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system, Part II: Preliminary model validation, Mon. Wea. Rev., 129, 587-604.
    5. Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984, A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20, 682-690
    6. Deardorff, J. W., 1977, A parameterization of ground-surface moisture content for use in atmosphere prediction models, J. Appl. Meteor., 16, 1182-1185.
    7. Deardorff, J. W., 1978, Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, J. Geophys. Res., 83, 1889-1903.
    8. Irannejad, P. and A., Henderson-Sellers, 2006, Evaluation of AMIP II Global Climate Model Simulations of the Land-surface Water Budget and its Components over the GEWEX-CEOP Regions, J. Hydrometeor., accepted.
    9. Irannejad, P. and A., Henderson-Sellers, 2006, Evaluation of AMIP II Global Climate Model Simulations of the Land-surface Water Budget and its Components over the GEWEX-CEOP Regions, J. Hydrometeor., accepted.
    10. Jacquemin, B. and J. Noilhan, 1990, Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set, Bound.-Layer Meteor., 52, 93-134.
    11. Mahfouf, J. F., and J. Noilhan, 1991, Comparative study of various formulations from bare soil using in situ data. J. Appl. Meteor., 30, 1354-1364.
    12. Mahrt, L. and H. L. Pan, 1984, A two- layer model of soil hydrology, Bound- Layer Meteor, 29, 1-20
    13. Manabe, S, 1969, Climate and ocean circulation: 1.The atmospheric circulation and hydrology of the earth surface, Mon. Wea. Rev., 97, 739-774
    14. Mc Cumber, M. C. and R. A. Pielke, 1981, Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model soil layer, J. Geophys. Res., 86, 9929-9938.
    15. Noilhan, J. E. and S. Planton, 1989, A simple parameterization of land surface processes for meteorological models, Mon. Wea. Rev., 117, 536-549.
    16. Noilhan, J. and J.-F. Mahfouf, 1995, The ISBA land surface parameterization scheme, Global and Planetary Change, 13, 145-159.
    17. Pleim, J. E. and A. Xue, 2003, Development of a land surface model. Part II: Data Assimilation, J. Appl. Meteor., 42, 1811-1822.
    18. Schaake, J. C., V. I. Koren, Q. Y. Mitchell, and F. Chen, 1996, A simple water balance model (SWB) for estimating runoff at different spatial and temporal scales, J. Geophys. Res., 101, 7461-7475.
    19. Verstraete, M. M. and R. E, Dickinson, 1986, Modeling surface processes in atmospheric general circulation models, Ann. Geophys., 4(B), 357-364.
    20. Xue, A., J. E. Pleim, 2001, Development of a land surface model. Part I: Application in a mesoscale meteorological model, J. Appl. Meteor., 40, 192-209.