Investigation of the effect of atmospheric parameters on the snow cover of Koohrang watershed

Document Type : Original Article

Authors

1 Ph.D. Student of Climatology, Department of Geography, Yazd University, Iran

2 , Associate Prof. of Climatology, Department of Geography, Yazd University, Iran

3 Prof. of Climatology, Department of Geography, Yazd University, Iran

10.30467/nivar.2021.263731.1175

Abstract

The shortage of usable water and the rising water consumption due to the increasing population, the increasing standard of living, and the growth of technology are a concern worldwide that raise water need and scarcity. Therefore, in this study, the effect of atmospheric parameters on Koohrang's snow cover from 2010 to 2018 years was investigated. Snow has an essential role in the hydrological cycle due to water resources' supply in low water seasons and energy production. For this purpose, the role of the atmospheric parameters on snow cover was determined using statistical methods. In this study, by examining linear and non-linear regression relationships between atmospheric parameters (maximum, minimum and average temperature and precipitation) and snow cover, it was found that the highest correlation coefficient is related to the maximum temperature parameter (0.87) and the lowest correlation coefficient is related to precipitation (0.26). Among the used regressions, nonlinear regression recorded a higher correlation coefficient in the parameters of total annual precipitation (0.34), minimum and maximum temperatures (0.74 and 0.87, respectively). At the same time, there was no change in the correlation coefficient calculated for the mean temperature parameter. The results of researech also show a decreasing trend in snow cover of the watershed during this period. There is also a significant relationship between temperature and snow cover parameters that can be used to diagnose snow cover in the region.

Keywords


1. سیفی، ه.، قربانی، ا.، 1398. برآورد سطح پوشش برف از طریق تکنیک‌های شیءگرا با استفاده از تصاویر سنجنده های OLI و TIRS - مطالعه موردی: کوهستان سهند. فصلنامه علمی - پژوهشی داده‌های جغرافیایی (سپهر)، شماره 109، صفحات 7 تا 91.
2. عزتی، م.، شکوهی، ع.، نوری، م.، پی سینگ، و. 1397. بررسی روند تغییرات دما و بارش و اثر آن بر پتانسیل منابع آب ورودی به سد طالقان. تحقیقات آب و خاک ایران (علوم کشاورزی ایران). شماره 49، صفحات 705 تا 716.
3. صلاحی، ب.، نخستین روحی، م.، 1397. پایش مکانی و زمانی سطح پوشش برف با تصاویر NOAA-AVHRR در بازه زمانی 93-1385 (مطالعه موردی: حوضه آبخیز بالیقلوچای)، مجله پژوهش آب ایران، شماره 3، صفحات 89 تا 98.
4. قربان زاده، ح.، صدقی، ح.، ثقفیان، ب.، پرهمت، ج. 1388. بررسی اثر تغییراقلیم بر توزیع زمانی جریان رواناب ناشی از ذوب برف در حوضه کارون .علوم و مهندسی آبخیزداری ایران، سال3، شماره 9، صفحات 45 تا 50. 
5. Alonso-González, E., López-Moreno, J.I., Navarro-Serrano, F., Sanmiguel-Vallelado, A., Aznárez-Balta, M., & Revuelto, J. 2020.
6.  Snowpack sensitivity to . temperature, precipitation, and solar radiation variability over an elevational gradient in the Iberian mountains, Atmospheric Research, Vol . 243, pp. 185-192.
7. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P.  2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, Vol. 438, pp. 303-309.
8. Berghuijs, W. R., Woods, R. A., &  Hrachowitz, M. 2014. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nature Climate Change, Vol. 4, pp. 583-586.
9. Brooks, C.E., & Carruthers, N., 1953, Handbook of statistical methods in meteorology, Her Majesty's Stationery Office.
10. Morán‐Tejeda, E.,  López‐Moreno, J., &  Beniston, M., 2013. Geophysical Research Letters, Vol . 40, pp. 2131-2136.
11. Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., & Senan, R., 2019. 
12. Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations, The Cryosphere, Vol .13, pp. 2221-2239.
13. Parajka, J., & Blöschl, G., 2006. Validation of MODIS snow cover images over Austria, Hydrology and Earth System Sciences, Vol . 10, pp.  679-689.
14. Pérez, T., Mattar, C., & Fuster, R., 2018. Decrease in Snow Cover over the Aysén River Catchment in Patagonia, Chile. Water, Vol . 10, pp. 619-625.
15. Saavedra, F., Kampf, S., & Sibold, J. 2018. Changes in Andes snow cover from MODIS data, 2000–2016. The Cryosphere, Vol. 12, pp. 1027-1046.
16. Serrano, A., Mateos, V.L, & Garcia, J.A., 1999. Trend Analysis of Monthly Precipitation over the Iberian Peninsula for the Period 1921-1995, Physics Chem Earth (B), Vol. 24, pp.85-90.
17. Şorman, A., Akyürek, Z., Şensoy, A., Şorman, A., & Tekeli, A., 2007. Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey, Hydrology and Earth System Sciences, Vol .11, pp. 1353-1360.
18. Stewart, I. T., Cayan, D. R. & Dettinger, M. D. 2005. Changes toward earlier streamflow timing across western North America. J. Clim, Vol. 18, pp. 1136-1155.
19. Tang, B.-H., Shrestha, B., Li, Z.-L., Liu, G., Ouyang, H., Gurung, D. R., & San Aung, K., 2013. Determination of snow cover from MODIS data for the Tibetan Plateau region, International Journal of Applied Earth Observation and Geoinformation, Vol .21, pp.356-365.
20. Zhang, H., Zhang, F., Che, T., & Wang, S., 2020.  Comparative evaluation of VIIRS daily snow cover product with MODIS for snow detection in China based on ground observations, Science of The Total Environment, pp.138-156.
  • Receive Date: 26 December 2020
  • Revise Date: 05 June 2021
  • Accept Date: 07 June 2021
  • First Publish Date: 07 June 2021