Drought Monitoring of Rafsanjani Plain Under Climate Change Conditions

Document Type : Original Article


1 Graduate student, Department of Water Resources, Department of Water Science and Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman

2 Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.

3 Associate Professor and Faculty Member, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University, Kerman, Kerman

4 Assistant Professor and Faculty Member, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman



In the last few decades, the increase in the temperature of earth caused the imbalance in the planet’s climate and also caused great changes in most parts of the planet’s earth which named climate change. Drought is a phenomenon which can be affected a lot by the climate change. Paying attention to the changes of drought and also predicting it, can be effective in planning toward controlling and reducing its effects. In this article, by using The General Circulation of Barley HadCM3 and Lars_WG Downscaling model, under the publication scenarios B1, A1B and A2, the changes in the rainfall and daily temperature in the synoptic center of Rafsanjan in the period of 2018 to 2042 was reviewed. With considering the Determination coefficient (R2), there was a great correlation between the data acquired by the simulation, using the Lars_WG model and there was some visual data which could show the ability of the model in the future data stimulation. In the next step, RDI and EDI index were calculated for the basic period of 1993_2018 and future period of 2018_2042. Based on the results, A2 publication scenario, predicts worse conditions for future droughts of this region. Also final results showed that 2018_2019, 2020_2021, 2028_2029 and 2039_2040 faced hydrological droughts in all scenarios and the abundance of drought has increased comparing to the basic period.


  1. منابع

    1. حمیدیان­پور، م.، ع. مفیدی و م. سلیقه، 1395، ارزیابی تغییرات دما و بارش جنوب شرق ایران با استفاده از ریزمقیاس­نمایی خروجی مدلهای مختلف گردش عمومی جو در دوره 2099-2011، مجله پژوهش­های جغرافیای طبیعی، دوره 48، شماره1، صفحات 107 تا  123.
    2. خزانه­داری، ل.، ف، زابل عباسی، ش. قندهاری، م. کوهی و ش. ملبوسی، 1388، دورنمایی از وضعیت خشکسالی ایران طی سی سال آینده، جغرافیا و توسعه ناحیه­ای، شماره 12، صفحات 83 تا 99.
    3. سلاجقه، ع.، الف. رفیعی ساردویی، ع. مقدم نیا، ع، آ. ملکیان، ش. عراقی نژاد، ش. خلیقی سیگارودی و الف. صالح پورجم، 1395، پیش­بینی متغیرهای اقلیمی توسط مدل چندگانه خطی SDSM در دوره آینده برپایه سناریو A2. نشریه مدیریت بیابان، دوره  4، شماره  7، صفحات 12  تا 25. 
    4. شفیعی، ش. و غ. مظفری، 1394، پیش­بینی و تحلیل فضایی خشکسالی استان یزد در دوره 2030-2011 میلادی با استفاده از مدل­های گردش عمومی جو. کنفرانس بین‌المللی معماری، شهرسازی، مهندسی عمران، هنر، محیط زیست، افق‌های آینده، نگاه به گذشته، تهران.
    5. عباسی، ف. و م. اثمری، 390. پیش­بینی و ارزیابی تغییرات دما و بارش طیّ دهه‌های اخیر با الگوی MAGIC-SCENGEN، مجله آب و خاک. شماره 25. صفحات 70 تا 83.
    6. علیزاده، ا. 1389، اقلیم و هواشناسی کشاورزی، انتشارات آستان قدس رضوی، 502 صفحه.
    7. کمال، ع.، و مساح بوانی، ع. ر، 1389، تأثیر تغییر و نوسانات اقلیمی بر رواناب حوضه با دخالت عدم قطعیت دو مدل هیدرولوژی، نشریه آب و خاک، شماره 5، صفحات 20 تا 31.
    8. گل محمدی، م. و ع. مساح بوانی ،1390، بررسی تغییرات شدت و دوره بازگشت خشکسالی حوضه قره سو در دوره‌های آتی تحت تأثیر تغییر اقلیم.1390. دوره 25-شماره 2، صفحات 315 تا 326.
      1. Babaeian, I., Najafi, Nik Z., Zabol Abassi, F., Habibi Nokhandan, M., Adab, H., and Malbusi, S., 2009, Climate change assessment over Iran during 2010-2039 by using statistical downscaling of ECHO-G data, Journal of Geography and Development, 7(16):135-152.
      2. Byun, HR., and Wilhite, DA.,1992, Objective quantification of drought severity and duration, Journal of Climate, 12:2747-2756.
      3. Byun, HR., Personal communications, 2002.
      4. Chu, JT., Xia, J., Xu, CY., and Sing, VP., Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe river, 2010, China. Theatrical and Applied Climatology, 99:149-161.
      5. Fowler, HJ., and Wilby, RL., 2007, Beyond the downscaling comparison study. International Journal of Climatology, 27(12):1543-1545.
      6. Hadley center, 2006, Effect of climate change in the developing countries.UK Meteorological Office.
      7. IPCC, 2007, Summary for policy maker’s climate change: The physical science basis. Contribution of working group I to the forth assessment report. Cambridge University Press, 881pp.
      8. Kiem, AS., and Austin, EK., Drought and the future of rural communities: Opportunities and challenges for climate change adaptation in regional Victoria, Australia. Journal of Global Environmental Change, 23(5):1307-1316.
      9. Kousari, MR., Dastorani, MT., Niazi, Y., Soheili, E., Hayatzadeh, M., and Chezgi, J., Trend, 2014, Detection of Drought in Arid and Semi-Arid Regions of Iran Based on Implementation of Reconnaissance Drought Index (RDI) and Application of Non-Parametrical Statistical Method, Journal of Water Resources Management, 28(7):1857–1872.
      10. Loukas, A., Vasiliades, L., and Tzabiras, J., 2008, Climate change effects on drought severity, Journal of Advances in Geosciences, 17: 23-29.
      11. Mpelasoka, F., Hennessy, K., Jones, R., and Bates, B., 2008, Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. International Journal of Climatology, 28(10):1283-1292.
      12. Quevauviller, P.,2011, Adapting to climate change: reducing water-related risks in Europe – EU policy and research considerations, Environmental Science and Policy Journal, 14(7):722-729.
      13. Rajabi, A., and Shabanlou, S., 2012, Climate index changes in future by using SDSM in Kermanshah, Iran, Journal of Environmental Research and Development, 7(1):37-40.
      14. Rostami, N., Shafizadeh, F., and Sadrabadi, AR., 2016, Assessing Spatiotemporal Variability of drought trend in Iran using RDI index, Journal of Natural Environment Change, 2(1):67-77.
      15. Saleh Nia, N., 2011, The prediction of drought by using the data from the General Circulation of Barley model and the methods of statistics Microscale view (subjective study: Neishabour district), M.S.C thesis, Ferdowsi university of Mashhad.
      16. Tsakiris, G., 2004, Meteorological Drought Assessment, Paper prepared for the needs of the European Research Program MEDROPLAN (Mediterranean Drought Preparedness and Mitigation Planning) Zaragoza, Spain.
      17. Vidal, JP., and Wade, S., 2009, A multi model assessment of future climatological droughts in the United Kingdom, International Journal of Climatology, 29(14):2056-2071.
      18. Vrochidou, AEK., Tsanis, IK., Grillakis, MG., and Koutroulis, AG., 2013, The impact of climate change on hydro meteorological droughts at a basin scale, Journal of Hydrology, 476:290-301.
      19. Wang YQ., Leung, LR., McGregor, L., Wang, YC., Ding, YH., and Kimura, F., 2004, Regional climate modeling: progress, challenges, and prospects, Journal of Meteorological Society of Japan, 82(6):1599-1628.
      20. Willby, RL, Dawson, CW., Barrow, EM., 2001, SDSM Version 3.1 –A decision support tool for the assessment of regional climate change impacts, Environmental Modelling and Software Journal Softw17: 147-159.
      21. Xu, CY., 1999, From GCMs to river flow: A review of downscaling methods and hydrologic modeling approaches. Progress in Physical Geography, 23(3):229-249.




Volume 44, 110-111 - Serial Number 110
September 2020
Pages 77-90
  • Receive Date: 15 September 2019
  • Revise Date: 18 April 2020
  • Accept Date: 26 April 2020
  • First Publish Date: 22 September 2020