Investigating the relationship between dust event and climate and surface factors in Khuzestan province (2011-2019)

Document Type : Original Article

Author

Department of Earth Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

10.30467/nivar.2023.365357.1230

Abstract

Khuzestan province is affected by dust storms. The purpose of this study is to identify ‎the most significant climate and surface factors in the emission and transfer of dust in this province. By means ‎of remote sensing data including MERRA-2, GLDAS as well as Aqua, the ‎monthly average mass concentration of surface dust, air column dust and climate and surface ‎variables from 2011 to 2019 have been prepared and analyzed. The result revealed that the ‎region with an average vegetation cover index of 0.15 is susceptible to wind erosion and local dust. Also the ‎result demonstrated that the dust surface concentration and the dust column density declines from the ‎southwest to the northeast of the region due to the increased distance from the cross-border dust sources and ‎also the mountainous structure of the northeast. Analyzing of the annual distribution, showed a negative ‎relationship between the dust surface mass concentration and vegetation, and also positive/negative relationship ‎between dust column density and vegetation/ precipitation. In the monthly distribution of dust ‎ surface concentration and wind speed a positive correlation of 0.84 and 0.96 obtained, respectively. while ‎negative correlation values of -0.84, -0.81, and -0.54 were found Respectively. Therefore, dust surface concentration has the highest correlation with climate factors, which indicate the impact of cross-border ‎dust. Based on the results obtained, the annual distribution, showed a negative relationship with the dust surface concentration and vegetation. In addition, the relationship between dust column density and ‎vegetation and precipitation showed negative and positive values, respectively.‎

Keywords


1-چراغی، م.، ا... خراسانی، ن.، نعمت، ندافی و کرمی. (2002). بررسی و مقایسه کیفیت هوا در شهرهای تهران و اصفهان در سال 1378 و ارائه راهکارهایی برای بهبود آن. مجله منابع طبیعی ایران (منتشر نمی‌شود)، 55(4).
2.    حیدریان، پ.، اژدری، ع.، جودکی، م.، درویشی خاتونی، ج؛ و شهبازی، ر. (2017). شناسایی منشأهای داخلی توفان های گردوغبار با استفاده از سنجش‌ازدور، GIS و  زمین‌شناسی (مطالعه موردی: استان خوزستان). فصلنامه علمی علوم زمین، 27(105)، 33-46.
3.    شعاعی، ض.، مددی، غ.، اکبر، ع. ن؛ و چی، ع. ک. (1394). بررسی رطوبت خاک در مناطق تولید گردوغبار  (مطالعه موردی استان ایلام) اولین کنفرانس بین المللی گردوغبار.
4.    صداقت، م؛ و نظری پور، ح. (1399). پایش تغییرات رطوبت خاک در تالاب هورالعظیم و ارتباط آن با  طوفان‌های گردوغبار در جنوب غرب ایران. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر»، 29(114)، 133-145.
5.    طائی سمیرمی، س.، مرادی، ح. ر.، خداقلی، م؛ و احمدی آخورمه، م. (1392). شناخت و بررسی عوامل مؤثر بر پدیده‌ گردوغبار در غرب ایران. انسان و محیط زیست، 11(شماره 4(27-پیاپی 38))، 1-10.
6.    عطارد، پ.، صادقی، س. م. م.، طاهری سرتشنیزی، ف.، ساروئی، س.، عباسیان، پ.، مسیح پور، م.، کردرستمی، ف؛ و دریکوندی، آ. (2016). اثرگذاری عوامل اقلیمی و تبخیرتعرق بر زوال جنگل‎‎های زاگرس مرکزی در استان لرستان. تحقیقات حمایت و حفاظت جنگلها و مراتع ایران، 13(2)، 97-112.
7.    علیزاده چوبری، ا. (1396). مطالعۀ عددی اثر غیرمستقیم هواویزها بر تابش طول موج کوتاه و بلند: مطالعۀ موردی. فیزیک زمین و فضا، 43(2)، 441-450.
8.    فرهادی پور، س.، آزادی، م.، علی اکبری بیدختی، ع.، علیزاده چوبری، ا؛ و سیاری، ح. ا. (1396). توفان‌های‌ خاک در منطقه غرب و جنوب غرب ایران و تأثیر آن‌ها بر شار‌های تابشی: مطالعه موردی. مجله ژئوفیزیک ایران، 11(3)، 75-89.
9.    نورزاده حداد، م؛ و بهرامی، ح. (1394). بررسی ارتباط غلظت ریزگرد با رطوبت سطحی و توزیع اندازه ذرات خاک با استفاده از شبیه‌ساز متحرک فرسایش بادی در نواحی بیابانی غرب استان خوزستان. کاوش های جغرافیایی مناطق بیابانی، 3(1)، 183-167.
10.    نوروزی، ع. ا؛ و شعاعی، ض. ا. (1397). شناسایی مناطق دارای پتانسیل تولید گردوغبار در جنوب غرب ایران، مطالعه موردی: استان خوزستان. مهندسی و مدیریت آبخیز، سال دهم، 398-409.
11.    هاشمی، ز.، سودائی زاده، ح؛ و مختاری، م. (2022). بررسی رابطة دمای سطح زمین با پوشش گیاهی و رطوبت سطحی در کاربری‌های اراضی منطقة زهک  دشت سیستان با استفاده از تصاویر ماهواره‌ای لندست. نشریه سنجش‌ازدور و GIS ایران، 14(1)، 21-42.
 Adib, A., Oulapour, M., andChatroze, A. (2018). Effects of wind velocity and soil characteristics on dust storm generation in Hawr-al-Azim Wetland, Southwest Iran. Caspian Journal of .12 Environmental Sciences, 16(4), 333-347    
13.    An, L., Che, H., Xue, M., Zhang, T., Wang, H., Wang, Y., Zhou, C., Zhao, H., Gui, K., andZheng, Y. (2018). Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Relationships with surface conditions and climate change. Science of The Total Environment, 633, 452-462.
14.    Buchard, V., Randles, C., Da Silva, A., Darmenov, A., Colarco, P., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A., andZiemba, L. (2017). The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. Journal of climate, 30(17), 6851-6872.
15.    Choi, H., Shin, D. W., Kim, W., Doh, S.-J., Lee, S. H., andNoh, M. (2011). Asian dust storm particles induce a broad toxicological transcriptional program in human epidermal keratinocytes. Toxicology letters, 200(1-2), 92-99.
16.    Cowie, S. M., Knippertz, P., andMarsham, J. H. (2013). Are vegetation‐related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophysical research letters, 40(9), 1868-1872.
17.    Gao, Z., Xu, X., Wang, J., Yang, H., Huang, W., andFeng, H. (2013). A method of estimating soil moisture based on the linear decomposition of mixture pixels. Mathematical and Computer Modelling, 58(3-4), 606-613.
18.    Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., andLin, S. J. (2001). Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research: Atmospheres, 106(D17), 20255-20273.
19.    Griggs, D. J., andNoguer, M. (2002). Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the 
Intergovernmental Panel on Climate Change. Weather, 57(8), 267-269.
20.    Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., andReichle, R. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of climate, 30(14), 5419-5454.
21.    He, Q., andSilliman, B. R. (2019). Climate change, human impacts, and coastal ecosystems in the Anthropocene. Current Biology, 29(19), R1021-R1035.
22.    Houthuijs, D., Breugelmans, O., Hoek, G., Vaskövi, E., Miháliková, E., Pastuszka, J. S., Jirik, V., Sachelarescu, S., Lolova, D., andMeliefste, K. (2001). PM10 and PM2. 5 concentrations in Central and Eastern Europe:: Results from the Cesar study. Atmospheric environment, 35(15), 2757-2771.
23.    Hua, N.-P., Kobayashi, F., Iwasaka, Y., Shi, G.-Y., andNaganuma, T. (2007). Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia, 23(4), 291-298.
24.    Ishizuka, M., Mikami, M., Yamada, Y., Zeng, F., andGao, W. (2005). An observational study of soil moisture effects on wind erosion at a gobi site in the Taklimakan Desert. Journal of Geophysical Research: Atmospheres, 110(D18).
25.    Kim, D., Chin, M., Bian, H., Tan, Q., Brown, M. E., Zheng, T., You, R., Diehl, T., Ginoux, P., andKucsera, T. (2013). The effect of the dynamic surface bareness on dust source function, emission, and distribution. Journal of Geophysical Research: Atmospheres, 118(2), 871-886.
26.    Kim, H., Zohaib, M., Cho, E., Kerr, Y. H., andChoi, M. (2017). Development and assessment of the sand dust prediction 
model by utilizing microwave-based satellite soil moisture and reanalysis
datasets in East Asian desert areas. Advances in Meteorology, 2017.
27.    Middleton, N. (1986). A geography of dust storms in South‐west Asia. Journal of Climatology, 6(2), 183-196.
28.    Middleton, N., andKang, U. (2017). Sand and dust storms: Impact mitigation. Sustainability, 9(6), 1053.
29.    Miller, J., Barlage, M., Zeng, X., Wei, H., Mitchell, K., andTarpley, D. (2006). 
Sensitivity of the NCEP/Noah land surface model to the MODIS green vegetation fraction data set. Geophysical research letters, 33(13).
30.    Molod, A., Takacs, L., Suarez, M., andBacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geoscientific Model Development, 8(5), 1339-1356.
31.    Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, G., andSehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric environment, 173, 265-276.
32.    Natsagdorj, L., Jugder, D., andChung, Y. (2003). Analysis of dust storms observed in Mongolia during 1937–1999. Atmospheric environment, 37(9-10), 1401-1411.
33.    Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., andGill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of geophysics, 40(1), 2-1-2-31.
34.    Randles, C., Da Silva, A., Buchard, V., Colarco, P., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., andHair, J. (2017). The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. Journal of climate, 30(17), 6823-6850.
35.    Ravi, S., andD'Odorico, P. (2005). A field‐scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical research letters, 32(21).
36.    Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., andKim, G.-K. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of climate, 24(14), 3624-3648.
37.    Tan, M., andLi, X. (2015). Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data. Land Use Policy, 43, 42-47.
38.    Tegen, I., andFung, I. (1994). Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. Journal of Geophysical Research: Atmospheres, 99(D11), 22897-22914.
39.    Tegen, I., Werner, M., Harrison, S. P., andKohfeld, K. E. (2004). Relative importance of climate and land use in determining present and future global soil dust emission. Geophysical research letters, 31(5).
40.    Veselovskii, I., Goloub, P., Podvin, T., Tanre, D., Da Silva, A., Colarco, P., Castellanos, P., Korenskiy, M., Hu, Q., andWhiteman, D. N. (2018). Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie–Raman lidar observations. Atmospheric measurement techniques, 11(2), 949-969.
41.    Sofue, Y., Hoshino, B., Demura, Y., Nduati, E., andKondoh, A. (2017). The interactions between precipitation, vegetation and dust emission over semi-arid Mongolia. Atmospheric Chemistry and Physics Discussions, 1-10.
42.    Wang, J. X. (2015). Mapping the global dust storm records: Review of dust data sources in supporting modeling/climate study. Current Pollution Reports, 1(2), 82-94.
43.    Wang, X., Dong, Z., Zhang, J., andLiu, L. (2004). Modern dust storms in China: an overview. Journal of Arid Environments, 58(4), 559-574.
44.    Xuan, J., Sokolik, I. N., Hao, J., Guo, F., Mao, H., andYang, G. (2004). Identification and characterization of sources of atmospheric mineral dust in East Asia. Atmospheric environment, 38(36), 6239-6252.
45.    Yu, R., Li, J., andChen, H. (2009). Diurnal variation of surface wind over central 
eastern China. Climate dynamics, 33(7), 1089-1097.
46.    Zhang, J., Dong, W., andFu, C. (2005). Impact of land surface degradation in northern China and southern Mongolia on 
regional climate. Chinese Science Bulletin, 50(1), 75-81.
47.    Zhang, X., Wu, S., Yan, X., andChen, Z. (2017). A global classification of vegetation based on NDVI, rainfall and temperature.
International Journal of Climatology, 37(5), 2318-2324
Volume 46, 118-119 - Serial Number 118
September 2022
Pages 144-162
  • Receive Date: 15 October 2022
  • Revise Date: 23 January 2023
  • Accept Date: 07 March 2023
  • First Publish Date: 07 March 2023