Speckle filtering impact on land cover mapping using the combination of Sentinel-1 and Sentinel-2 images (Case study: Bandar Mahshahr)

Document Type : Original Article

Authors

1 M.Sc. Student, Remote sensing and GIS Department, Faculty of Geography, University of Tehran

2 Assistant professor, University of Tehran, Faculty of Geography, Tehran, Iran

3 Professor of Faculty of Geography, University of Tehran

10.30467/nivar.2022.167435

Abstract

Land use and land cover maps are essentially needed for socio-economic development and environment protection. Accurate and up to date maps play an important role in urban planning. Synthetic Aperture Radar (SAR) sensors provides unique information from the Earth surface due to their imaging capabilities in all-weather condition. However, inherent speckle effect limits their application. In this study, the effect of speckle filtering on the land use/land cover (LULC) classification map in Bander-Mahshahr, Iran has been studied. Dual-polarimetric Sentinel 1-A (VH,VV) and multispectral Sentinel-2B were fused for classification purposes. Different speckle removing methods such as Boxcar, Median, Frost, Refined Lee, Lee Sigma, Intensity-Driven Adaptive-Neighborhood, Gamma Map, and Lee filters were applied on the Sentinel-1A dataset. The Gram–Schmidt (GS) fusion process was chosen to integrate the multispectral Sentinel-2 data and VH, VV bands of Sentinel-1 data. Then, the LULC (land use/land cover) was produced with a random forest classifier. IDAN filter has reached the highest overall accuracy (i.e., 76.64%) and Kappa coefficient (i.e., 0.72) on the combined VH polarization image and sentinel-2 bands. Also, in combining VV polarization with Sentinel 2 bands, the median filter provides the highest performance with overall accuracy of 76.6% and Kappa coefficient of 0.7. As the study area is located in a coastal environment and there is frequent cloud cover, the combination of two polarizations VV and VH without using Sentinel-2 bands was also studied. The highest performance was provided by the boxcar filter with an overall accuracy of 95.56% and a Kappa coefficient of 0.94. The obtained results confirm the high capabilities of SAR images in LULC mapping in a coastal city

Keywords


1.    سلحشوری، فاطمه و المدرسی، سیدعلی،1395، ارزیابی اثر فیلترهای مختلف بر کاهش نویز اسپکل در تصاویر رادار با طول موج‌های متفاوت (منطقه مورد مطالعه جزیره قشم)،
اولین سمینار آینده پژوهی توسعه ملی ایران در بستر جغرافیا.
2.    Rawat, J. S. & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77-84.‏
3.    Ali, M. Z. Qazi, W. & Aslam, N. (2018). A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier. The Egyptian Journal of Remote Sensing and Space Science, 21, S29-S35.‏
4.    Shareef, M. A. & Hasan, S. F. (2020). Characterization and estimation of dates palm trees in an urban area using gis-based least-squares model and minimum noise fraction images. Journal of Ecological Engineering, 21(6).‏
5.    Badreldin, N. & Goossens, R. (2014). Monitoring land use/land cover change using multi-temporal Landsat satellite images in an arid environment: a case study of El-Arish, Egypt. Arabian Journal of Geosciences, 7(5), 1671-1681.‏
6.    Steinhausen, M. J. Wagner, P. D. Narasimhan, B. & Waske, B. (2018). Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International journal of applied earth observation and geoinformation, 73, 595-604.‏
7.    Du, Z. Ge, L. Ng, A. H. M. Zhu, Q. Yang, X. & Li, L. (2018). Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images. International 
journal of applied earth observation and geoinformation, 67, 54-68.
8.    ‏ Denize, J. Hubert-Moy, L. Betbeder, J. Corgne,
S. Baudry, J. & Pottier, E. (2019). Evaluation of using sentinel-1 and-2 time-series to identify winter land use in agricultural landscapes. Remote Sensing, 11(1), 37.‏
9.    Pham, L. H. Pham, L. T. Dang, T. D. Tran, D. D. & Dinh, T. Q. (2020). Application of Sentinel-1 data in mapping land-use and land cover in a complex seasonal landscape: a case study in coastal area of Vietnamese Mekong Delta. Geocarto International, 1-18.‏
10.    Schulz, D. Yin, H. Tischbein, B. Verleysdonk, S. Adamou, R. & Kumar, N. (2021). Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 97-111.‏
11.    Barbosa, F. L. R. Guimarães, R. F. Carvalho, O. A. D. & Gomes, R. A. T. (2021). Land Use/Land Cover (LULC) classification based on SAR/Sentinel 1 image in Distrito Federal, Brazil. Sociedade & Natureza, 33.‏
12.    de Leeuw, M. R. & de Carvalho, L. M. T. (2009). Performance evaluation of several adaptive speckle filters for SAR imaging. Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, 7299-7305.‏
13.    Rana, V. K. & Suryanarayana, T. M. V. (2019). Evaluation of SAR speckle filter technique for inundation mapping. Remote 
Sensing Applications: Society and Environment, 16, 100271.‏
14.    Ansari, J. Ghosh, S. M. Behera, M. D. & Gupta, S. K. (2020, December). A Study on Speckle Removal Techniques for Sentinel-1A SAR Data Over Sundarbans, Mangrove Forest, India. In 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS) (pp. 90-93). IEEE.‏
15.    Benzougagh, B. Frison, P. L. Meshram, S. G. Boudad, L. Dridri, A. Sadkaoui, D. ... & Khedher, K. M. (2021). Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study—Inaouene Watershed from Northeast of Morocco. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-10.‏
16.    Shanthi, I. & Valarmathi, M. L. (2013). SAR image despeckling using possibilistic fuzzy C-means clustering and edge detection in bandelet domain. Neural Computing and Applications, 23(1), 279-291.‏
17.    Frost, V. S. Stiles, J. A. Shanmugan, K. S. & Holtzman, J. C. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on pattern analysis and machine intelligence, (2), 157-166.‏
18.    Lopes, A. Nezry, E. Touzi, R. & Laur, H. (1990, May). Maximum a posteriori speckle filtering and first order texture models in SAR images. In 10th annual international symposium on geoscience and remote sensing (pp. 2409-2412). Ieee.‏
19.    Lopes, A. Touzi, R. & Nezry, E. (1990). Adaptive speckle filters and scene heterogeneity. IEEE transactions on Geoscience 
and Remote Sensing, 28(6), 992-1000.‏
20.    Lee, J. S. (1986). Speckle suppression and analysis for synthetic aperture radar images. Optical engineering, 25(5), 255636.‏
21.    Lee, J. S. (1983). Digital image smoothing and the sigma filter. Computer vision, graphics, and image processing, 24(2), 255-269.
22.    Vasile, G. Trouvé, E. Lee, J. S. & Buzuloiu, V. (2006). Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1609-1621.‏
23.    Wang, L. Jia, M. Yin, D. & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231, 111223.
24.    Filipponi, F. (2019). Sentinel-1 GRD preprocessing workflow. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 18, No. 1, p. 11).‏‏
25.    Aldhshan, S. R. Mohammed, O. Z. & Shafri, H. M. (2019, November). Flash flood area mapping using sentinel-1 SAR data: a case study of eight upazilas in Sunamganj district, Bangladesh. In IOP Conference Series: Earth and Environmental Science (Vol. 357, No. 1, p. 012034).
26.    Rao, G. S. Brinda, V. Sree, P. M. & Bhanumurthy, V. (2006, December). Advantage of multipolarized SAR data for flood extent delineation. In Microwave Remote Sensing of the Atmosphere and Environment V (Vol. 6410, p. 64100Z). International Society for Optics and Photonics.‏
27.    Dadhich, g. Miyazaki, h. & Babel, m. (2019). applications of sentinel-1 synthetic aperture 
radar imagery for floods damage assessment: a case study of Nakhon Si Thammarat, Thailand. international archives of the photogrammetry, remote sensing & spatial information sciences.‏
28.    Belgiu, M. & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, 114, 24-31.‏
29.    Waske, B. & Braun, M. (2009). Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS journal of photogrammetry and remote sensing, 64(5), 450-457.‏
30.    Hasan, S. F., Shareef, M. A., & Hassan, N. D. (2021). Speckle filtering impact on land use/land cover classification area using the combination of Sentinel-1A and Sentinel-2B (a case study of Kirkuk city, Iraq). Arabian Journal of Geosciences, 14(4), 1-12.‏
31.    Ban, Y., Webber, L., Gamba, P., & Paganini, M. (2017, March). EO4Urban: Sentinel-1A SAR and Sentinel-2A MSI data for global 
urban services. In 2017 Joint urban remote sensing event (JURSE) (pp. 1-4). IEEE.‏
32.    Pesaresi, M., Corbane, C., Julea, A., Florczyk, A. J., Syrris, V., & Soille, P. (2016). Assessment of the added-value of Sentinel-2 for detecting built-up areas. Remote Sensing, 8(4), 299.‏
33.    Yesou, H., Pottier, E., Mercier, G., Grizonnet, M., Haouet, S., Giros, A., ... & Michel, J. (2016, July). Synergy of Sentinel-1 and Sentinel-2 imagery for wetland monitoring information extraction from continuous flow of sentinel images applied to water bodies and vegetation mapping and monitoring. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 162-165). IEEE.‏
34.    Talab, D. F. (2011). Speckle Noise Reduction in SAR Images Using Non-Adaptive Mode-Filter. Al-Mustansiriyah Journal of Science, 22(2).‏
Volume 46, 118-119 - Serial Number 118
September 2022
Pages 95-112
  • Receive Date: 27 December 2022
  • Revise Date: 04 February 2023
  • Accept Date: 25 February 2023
  • First Publish Date: 25 February 2023