نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده کشاورزی دانشگاه شهید مدنی اذربایجان

10.30467/nivar.2021.279204.1185

چکیده

برآورد دمای نقطه شبنم با روشی کارآمد در بسیاری از زمینه‌ها مانند برنامه‌ریزی‌های بخش کشاورزی از جمله محافظت محصولات در برابر صدمات، مطالعات هواشناسی، هیدرولوژیکی و اکولوژیکی مفید می‌باشد. در این تحقیق از رهیافت ترکیب پیش‌بینی مدل-های رگرسیون درختی، روش گروهی مدلسازی داده‌ها(GMDH) و روش تجربی جهت تخمین دمای نقطه شبنم در ایستگاه‌های رشت، یزد و ارومیه استفاده شد. داده‌های ورودی مدل‌های منفرد شامل داده‌های بیشینه سرعت باد، میانگین سرعت باد، دمای بیشینه، دمای کمینه، متوسط دما، متوسط رطوبت نسبی، کمینه و بیشینه رطوبت نسبی و فشار بخار اشباع بودند. رهیافت ترکیبی براساس رویکرد وزنی با روش‌های عکس واریانس و رگرسیون حداقل مربعات انجام گرفت. در مدل‌های منفرد، مدل GMDH نسبت به سایر مدل‌ها از کارایی بالایی برخوردار است به طوری که میزان کاهشRMSE از روش تجربی و رگرسیون درختی به مدل GMDH در ایستگاه رشت به ترتیب 66/66 و 45/59 درصد می‌باشد. رهیافت ترکیبی نسبت به مدل‌های انفرادی دقت عمل بالایی دارد و روش رگرسیون حداقل مربعات نسبت به روش عکس واریانس با معیارهای خطای متفاوت دارای خطای کمتری است، به طوری که محاسبه ضریب نش-ساتکلیف در ایستگاه‌های رشت، ارومیه و یزد به ترتیب 97/0، 96/0 و 87/0 می‌باشد. همچنین نوع معیار خطای مورد استفاده و توان تعریف شده در روش عکس واریانس در مقادیر پیش‌بینی موثر است و توان مناسب مربوط به خطا براساس داده‌های موجود ارائه شد.در بررسی تاثیر تنوع اقلیمی، ایستگاه رشت دارای کمترین خطا می‌باشد. همچنین عملکرد رهیافت ترکیبی با استفاده ار مدل‌های منفرد قوی افزایش می‌یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Weight combinations approach of models with inverse variance and least square regression methods for dew point temperature estimation

نویسنده [English]

  • Laleh Parviz

Azarbaijan Shahid Madani University

چکیده [English]

Dew point temperature estimation with proper method is useful in many fields such as agricultural planning including crop protection to the damages, meteorological, hydrological and ecological studies. In this study, the forecast combination approach of regression tree, Group Method of Data Handling(GMDH) and experimental method were applied to forecast dew point temperature in Rasht, Yazd and Urmia stations. The input variables of individual models were the maximum wind speed, mean wind speed, maximum, minimum and mean temperature, mean relative humidity, maximum and minimum relative humidity and saturation vapor pressure. The used methods of weight combination approach were inverse variance and least square regression. In the individual models, GMDH is more efficient than other models, so that the RMSE decreasing from empirical and regression tree to GMDH model in Rasht station is 66.66% and 59.45%, respectively. The combination approach is more accurate rather than the individual models and least square regression method has less error than the inverse variance with different error criteria, so that Nash-Sutcliff coefficient in Rash, Urmia and Yazd stations is 0.97,0.96 and 0.87, respectively. Also, the kind of error criteria and defined power in the inverse variance method is effective on forecasting values and the proper power basis on available data was proposed. In order to investigate the impact of climate diversity, Rasht station has the least error. The use of robust individual models will also increase the ability of forecast combination approach.

کلیدواژه‌ها [English]

  • combination approach
  • Inverse variance
  • Least square regression
  • GMDH
منابع 1-جرعه نوش، م.ه. وع. سپاسخواه، 1397،پیش‌بینی سرمازدگی با تخمین دمای حداقل روزانه در مناطق نیمه خشک،تحقیقات کشاورزی ایران،دوره 37، شماره 1، صفحات 19 تا 32. 2-علیزاده، ا.، 1387، اصول هیدرولوژی کاربردی، انتشارات دانشگاه فردوسی مشهد، صفحه 126. 3-مدرسی، ف.، ش. عراقی نژاد و ک. ابراهیمی، 1394،ارزیابی راهبرد ترکیب مدل ها در افزایش دقت پیش بینی بارش پاییزه،نشریه هواشناسی کشاورزی، دوره 3، شماره 2، صفحات 1 تا 13.4-Adhikari, R. and R.K. Agrawal, 2014, Performance evaluation of weights selection schemes for near combination of multiple forecasts, Artificial Intelligence Review, Vol. 42, pp.529-54 5-Amirmojahedi, M.,K. Mohammadi, S. Shamshirband,A.S. Danesh, A. Mostafaeipour, and A. Kamsin, , 2016, A hybrid computational intelligence method for predicting dew point temperature,Environmental Earth Sciences,Vol.75, pp.1-12 6-Breiman, L., J. Friedman, R.Olshen and C. Stone.1984, Classification and regression trees, Wadsworth andBrooks, Monterey 7-Chen, W., H. Xu, Z. Chen and M. Jiang, 2021, A novel method for time series prediction based on error decomposition and nonlinear combination of forecasters, Neurocomputing, Vol.426, pp.85-103 8-Danandeh Mehr , A., 2018, An improved gene expression programming model for streamflow forecasting in intermittent streams, Journal of hydrology, Vol.563, pp.669-678 9-Graeber, D. and A. Kleine, 2013, The combination of forecasts in the trading of electricity from renewable energy sources, Journal of Business Economics, Vol.83, pp.409-435 10-Ivakhnenko, A.G., 1971, Polynomial theory of complex systems, IEEE transactions on Systems, Man, and Cybernetics, (4), pp.364-378 11-Kim, S., V.P. Singh, C.J. Lee and Y. Seo, 2015, Modeling the physical dynamics of daily dew point temperature using soft computing techniques, KSCE Journal of Civil Engineering, Vol.19, pp.1930-1940 12-Kisi, O., S. Kim and J. Shiri, 2013, Estimation of dew point temperature using neuro-fuzzy and neural network techniques, Theoretical and Applied Climatology, Vol.114, pp.365-373 13-Onwubolu, G.C., P. Buryan and F. Lemke, 2008, Modeling tool wear in end-milling using enhanced GMDH learning networks, The International Journal of Advanced Manufacturing Technology, Vol. 39, pp.1080-1092 14-Qaderi, K., B. Bakhtiari, M.R. Madadi and Z. Afzali-Gorouh, 2020, Evaluating GMDH-based models to predict daily dew point temperature (case study of Kerman province), Meteorology and Atmospheric Physics, Vol,132, pp.667-682 15-Robinson, P.J., 2000, Temporal trends in United States dew point temperatures, International Journal of Climatology: A Journal of the Royal Meteorological Society, Vol.20, pp.985-1002 16-Samitas, A. and A. Armenatzoglou, 2014, Regression tree model versus Markov regime switching: a comparison for electricity spot price modelling and forecasting, Operational Research, Vol.14, pp.319-340 17-Shank, D.B., G. Hoogenboom and R.W. McClendon, 2008, Dewpoint temperature prediction using artificial neural networks, Journal of applied meteorology and climatology, Vol.47, pp.1757-1769 18-Shank, D.B., R.W. McClendon, J. Paz and G. Hoogenboom, 2008, Ensemble artificial neural networks for prediction of dew point temperature, Applied Artificial Intelligence, Vol. 22, pp.523-542 19-Shiri, J., S. Kim and O. Kisi, 2014, Estimation of daily dew point temperature using genetic programming and neural networks approaches, Hydrology Research, Vol.45, pp.165-181 20-Song, C. and X. Fu, 2020,Research on different weight combination in air quality forecasting models, Journal of Cleaner Production, Vol.261, pp.1-16 21-Wang, J., H. Zhou, T. Hong, X. Li and S.Wang, 2020,Amulti-granularity heterogeneous combination approach to crude oil price forecasting, Energy Economics, Vol.91, pp.1-9