نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اموزشی عمران. دانشگاه پیام نور

2 پیام نور

10.30467/nivar.2021.227624.1156

چکیده

ذرات معلق یکی از آلاینده‌ها ی مهم هوا است ، که بر سلامتی انسان تاثیرات منفی دارد. بدیهی است تخمین و پیش‌بینی غلظت این ذرات مهم است. در این تحقیق با استفاده از مقایسه شبکه عصبی مصنوعی پیش‌خور پس‌انتشار و شبکه عصبی مصنوعی بازگشتی(NARX) به تخمین ذرات معلق شهر تبریز پرداخته شده است. در این تحقیق داده‌های هواشناسی و داده‌های کیفیت هوا طی سال‌های 1392تا 1396 مورد استفاده قرار گرفت. تخمین غلظت ذرات معلق با توجه به میزان بارش، سرعت باد، مقدار دما در هر مدل و نتایج مقایسه گردید. همچنین از داده‌های غلظت ذرات معلق 5/2 میکرومتر درایستگاه سنجش کیفیت هوای باغشمال تبریز استفاده شد. 50 درصد داده‌ها برای صحت سنجی و آزمون واز 50درصد داده‌ها در روند آموزش استفاده شد. نبا توجه به نتایج ، در حالت ایستا و بدون تغییرات فصلی شبکه عصبی NARX با ضریب همبستگی (R) 9995/0 و کمترین خطای میانگین مربعات (MSE) یعنی005/0 بهینه ترین مدل این تحقیق شد.مقایسه نتایج مدل‌سازی با داده‌های واقعی نشان داد که بهترین پیش‌بینی متعلق به شبکه عصبی پیشخور پس‌انتشار است که با خطای 0007/0 بهترین دقت را دارد و بعد از آن به ترتیب شبکه عصبی NARX و NAR و نهایتا شبکه فازی تطبیقی قرار دارند

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation possibility of Particular Matter prediction by using Neural Network

نویسندگان [English]

  • elham asrari 1
  • Tohid Irani 2

1 payame Noor university

2 payame Noor University

چکیده [English]

Particular matters are one of the important air pollutants that have direct effects on human health. In this research, by comparing, feed forward ANN and NARX has been estimated particular matter of Tabriz city. metrology data and air quality data from 2013 to 2017 has been used. Particulate matter estimated by considering temperature, wind speed and rain precipitation in each model and the results compared. Also PM2.5 data form BaghShomal air quality station in Tabriz has been used. 50 present of data used for testing and validation and the rest of data used for training network The results showed that best state estimating with seasonal effect belong to feed forward ANN train with amounts of R=0.85, MSE=0.057and without seasonal effect belong to NARX with amounts of R=0.999, MSE=0.005. Modeling results with real data showed that best results belongs to feed forward ANN with 0.0007 error.

کلیدواژه‌ها [English]

  • Airpollution
  • Prticulate Matter
  • ANN
  • time series
منابع 1- اجتهادی، م.، 1386، بررسی آلودگی هوای شهری به دلیل فرایند‌های انتقال در خشکی با تاکید بر ذرات معلق و ارایه راهکارهای مدیریتی (مطاله موردی، تهران)، دهمین همایش بهداشت محیط . 2 - توکلی، م. و ع‌. اسماعیلی ساری، 1393، مقایسه عملکرد شبکه های عصبی مصنوعی و فازی تطبیقی در تخمین ذرات معلق تهران ، فصل نامه علوم و محیط زیست 75-2 . 3- رفیع پور، م.‌، ع. آل شیخ ، و. ع.، محمدی، ع. و ع. صادقی نیارکی، 1395، استفاده از شبکه بازگشتی NAR برای پیش بینی غلظت ذرات مونوکسید کربن، علوم و تکنولوژی محیط زیست، 18-3 . 4- عباس پور، ر‌.، 1396، پیش بینی غلظت آلاینده های مونوکسید کربن در کلان شهر تهران با استفاده از شبکه عصبی مصنوعی،19-5 . 5-Chatfield, C., 1989, The analysis of time series: An Introduction, 4th edition, Chapman and Hall, New York. 6-Dorffner, G., 1996, Neural networks for time series processing, Neural Network World 4(96), 447-68. 7- Elangasinghe, M., N. Singhal, K. Dirks and J. Salmond, 2014, Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis, Atmospheric Pollution Research, 5,696-708. 8-Fan, J.X., Q. Li and Y.J. Zhu, 2017, The space-time air pollution forecast model based on RNN study, Journal of Surveying and Mapping Science, 7, 80-87. 9-Ganesh S.S., S.H. Modali, S.R. Palreddy and P. Arulmozhivarman, 2017, Forecasting air quality index using regression models: A case study on Delhi and Houston, International Conference on Trends in Electronics and Informatics ,248-254. 10-Ganesh, S.S., P. Arulmozhivarman, and V.S.N.R. Tatavarti, 2018, Prediction of PM 2.5 using an ensemble of artificial neural networks and regression models, Journal of Ambient Intelligence and Humanized Computing,1-11. 11- Jang, J.S.R., N. Gulley, 1995, The fuzzy logic toolbox for use with MATLAB, The Mathworks Inc, Natick, MA. 12-Jiusheng, L., B. Zhenwu, 2003, Application of the neural network optical fiber temperature sensor probe design used in medical treatment, International Conference on Neural Networks and Signal Processing, Nanjing, pp. 389. 13-Nayak, P.C., K.P. Sudheer, D.M. Rangan and K.S. Ramasastri, 2005, Short term flood forecasting with a neuron fuzzy model , Water Resources Research,41(4),2517-2530. 14-Nelles, O., 2001, Nonlinear system identification, Springer, Berlin, Heidelberg. 15- Zemouri, R., R. Gouriveau and N. Zerhouni, 2010, Defining and applying prediction performance metrics on a recurrent NARX time series model, Neurocomputing, 73(13-15) ,2506-2521.