نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آب و هواشناسی، دانشگاه زنجان، زنجان، ایران.

2 گروه آب و هواشناسی، دانشگاه زنجان، زنجان، ایران

10.30467/nivar.2021.237927.1164

چکیده

جهت تشخیص ساختار گردش بزرگ مقیاس نصف‌النهاری سلول هادلی از داده‌های بازتحلیل پیش‌بینی میان مدت هواسپهر اروپایی (ECMWF) نسخه (ERA5) با تفکیک افقی مکانی 25/0*25/0 درجه و با بهره‌گیری از نقشه‌های دمای هوا، مؤلفه مداری بردار باد، مؤلفه مداری بردار باد سطح صفر در تراز 1000 هکتوپاسکال، مؤلفه نصف النهاری بردار باد، مولفه بالاسوی سرعت باد، تابع جریان عملکرد نصف‌النهاری، تابش موج بلند خروجی زمین برای دوره 40 ساله (2018-1979) و با استفاده از نرم افزار گردس و متلب انجام شد.نتایج این مطالعه نشان دادکه سلول هادلی براثر اختلاف چگالی حاصل از گرادیان حرارتی بین استوا و قطب به وجود آمده است که به دلیل چرخش زمین و انحراف کوریولیس، انتقال حرارت با صعود هوا در عرض‌های جغرافیایی پایین در منطقه حارّه و نزول آن در حدود 30 درجه شمالی و 35 درجه جنوبی مشاهده می‌شود و وزش مولفه مداری بردار باد در نزدیکی سطح زمین از غرب به شرق و در سطح بالا از شرق به غرب بالا می رود و همچنین به دلیل باد نصف‌النهاری، هوایی که صعودمیکند،به صورت نصف‌النهاری به سمت قطبها حرکت می‌کند،سپس فرو نشسته و جهت آن معکوس می‌ شودو به سمت استوا حرکت می‌کندو پیدایش گردش هادلی را موجب می گردد. در نیمکره شمالی مناطق بیابان های صحرای شمال آفریقا، خاورمیانه، ایران و جنوب غربی ایالات متحده بیشتر در شاخه نزول دینامیکی سلول هادلی قرار دارند،و مقدار رطوبت نسبی با 22 درصد در نیمکره جنوبی مناطق استرالیا و آفریقای جنوبی با 32 درصد رطوبت نسبی شرایط خشکی را در این مناطق حاکم کرده است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of dynamic structure Hadley Cell circulation in belt tropics

نویسندگان [English]

  • sayyed mahmoud hosseini seddigh 1
  • masoud jalali 2

1 Gruop, Climatologhy, znajan university, zanjan, Iran.

2 Climatology Group, zanjan university, zanjan. iran

چکیده [English]

the European Mid-Term Prediction Analysis version (ERA5) data with horizontal spatial resolution of 0.25 * 0.25 degrees and using From air temperature maps, wind vector orbital component, zero level wind vector orbital component at 1000 hPa, wind vector meridian component, wind speed component, meridional performance current function, long wave output of ground output wave for 40 years (1979-1979) and was done using Gardes and MATLAB software. The results showed that the Hadley cell is confined to the lower margin of the subtropics and is due to the density difference resulting from the thermal gradient between the equator and the pole. Due to the rotation of the earth and the Coriolis deviation, heat transfer Low geography is observed in the tropics and its descent is about 30 degrees north and 35 degrees south, and the wind component orbital component winds rise from the west to the east near the earth's surface and from the east to the west at the high level. The meridional wind, the air that ascends, moves in a meridional direction towards the poles, then subsides and reverses in its direction and moves towards the equator, causing the formation of a Hadley rotation. To be. In the Northern Hemisphere, the desert regions of North Africa, the Middle East, Iran, and the southwestern United States are mostly in the Hadley cell dynamic branch, with a relative humidity of 22% Also in the southern hemisphere, the regions of Australia and South Africa with 32% relative humidity.

کلیدواژه‌ها [English]

  • "Dynamic structure"
  • "Hadley cell circulation"
  • "tropical belt"
منابع
1. عساکره، ح.، 1382، نوسانات اقیانوس اطلس شمالی، نشریه علمی پژوهشی سپهر، دوره دوازدهم، شماره چهل و هشتم، ص 20.
2. علیجانی، ب.، 1393، آب و هواشناسی سینوپتیک، انتشارات سمت.
3. فلاح قالهری، غ،ع.، 1393، اصول و مبانی هواشناسی، انتشارات دانشگاه حکیم سبزواری، ص 497.
4. لشکری، ح؛ 1393.، آب و هواشناسی دینامیک، انتشارات دانشگاه شهید بهشتی، 213-214.
5. مفیدی، ع؛ ذرین، آ.، 1391، بررسی ماهیت، ساختار و وردایی زمانی گردش بزرگ مقیاس جو تابستانه بر روی جنوب غرب آسیا، نشریه پژوهش های اقلیم شناسی، سال سوم، شماره یازدهم، پاییز، ص 16.
6. Agard, A., 2009. Analysis of the General Circulation of the Atmosphere through Low- and Mid-Latitude Phenomena.
7. Birner, T., S. M. Davis, and D. J. Seidel., 2014. The changing width of Earth’s tropical belt. Phys. Today, 67, 38–44, doi:10.1063/PT.3.2620.
8. Cook, K.H., 2004. Hadley Circulation Dynamics: Seasonality and the Role of Continents.  In “The Hadley Circulation: Past, Present, and Future”. Series: Advances in Global Change Research, Vol.21. Diaz, Henry F.; Bradley, Raymond S. (Eds.), 511 p., SBN: 1-4020-2943-8.
9. Davis, N. A., 2017. The Dynamics of Hadley Circulation Variability and Change, Colorado State University, Libraries.
10. Feng, S., and Q. Fu., 2013. Expansion of global drylands under a warmer climate. Atmos. Chem. Phys., 13, 10081–10094, doi: 10.5194/acp-13-10081-2013.
11. Ferrel, W., 1856.  An essay on the winds and currents of the oceans, Nashville Journal of Medicine and Surgery.
12. Frierson, D. M. W., J. Lu, and G. Chen., 2007. Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi: 10.1029/2007GL031115.
13. Gaffen, D. J., B. D. Santer, J.S. Boyle, J. R. Christy, N.E. Graham, and R. J. Ross.,2002. Multidecadal changes in the vertical temperature structure of the tropical troposphere.Science, 287, 1242-1245.
14. Hadley, G., 1735. Concerning the cause of the general trade winds. Phil. Trans. Roy. Soc., 29, 58–62.
15. Held, I. M., and B. J. Soden., 2006. Robust Responses of the Hydrological Cycle to Global Warming. J. Climate, 19, 5685–5699, doi:10.1175/JCLI3990.1
16. Hurrell, J., 1996. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophy. Res. Lett., 23, 665-668.
17. IPCC. 1996. Climate Change 1995: The Science of Climate Change. J.T. Houghton et al. (eds.), Cambridge University Press, 572 pp.
18. IPCC. 2001. Climate Change 2001. The Science Basis. J.T. Houghton et al. (eds.), Cambridge University Press, 881 pp.
19. Johanson, C. M., and Q. Fu., 2009. Hadley cell widening: Model simulations versus observations. J. Climate, 22, 2713–2725, doi:10.1175/2008JCLI2620.1.
20. Karnauskas, K. B., and C. C. Ummenhofer., 2014. On the dynamics of the Hadley circulation and subtropical drying. Clim. Dyn., 2259–2269, doi: 10.1007/s00382-014-2129-1.
21. Lu, J., G. A. Vecchi, and T. Reichler., 2007. Expansion of the Hadley cell under global warming, Geophys. Res. Lett., 34, L06805, doi: 10.1029/2006GL028443.
22. Lu, J., G. A. Vecchi, and T. Reichler., 2007. Expansion of the Hadley cell under global warming, Geophys. Res. Lett., 34, L06805, doi: 10.1029/2006GL028443.
23. Nguyen, H., C. Lucas, A. Evans, B. Timbal, and L. Hanson., 2015. Expansion of the Southern Hemisphere Hadley Cell in Response to Greenhouse Gas Forcing. J. Climate, 28, 8067–8077, doi:0.1175/JCLI-D-15-0139.1.
24. Ort, A. H., and J. J. Yienger., 1996. Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 2751–2767.
25. Parker, D. E., 2002. Temperatures High and Low, Science, 287, 1216.
26. Scheff, J., and D. M. W. Frierson., 2012. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi: 10.1029/2012GL052910.
27. Stull, R., 2017. Practical Meteorology: An Algebra-based Survey of Atmospheric Science.pp377.